
 

 

Erasure Coding XRootD Object Store 

Andrew Hanushevsky1, Michal Kamil Simon2, and Wei Yang1* 
1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, USA 
2European Organization for Nuclear Research, Espl. des Particules 1, 1211 Meyrin, Switzerland 

Abstract. An erasure coding (EC) algorithm was implemented in XRootD 
client library, and an EC-enabled XRootD storage prototype was set up at 
SLAC for evaluation. The architecture and configuration of the prototype is 
almost identical to that of a traditional non-EC XRootD storage behind a 
firewall: a backend XRootD storage cluster in its simplest form, and an 
internet facing XRootD proxy. This proxy handles EC and spreads the data 
stripes of a file/object across several backend nodes. It also supports all 
functions used on a WLCG storage system: HTTP(s) and XRootD protocols, 
Third Party Copy, X509/VOMS/Token, etc. The cross-node EC architecture 
brings significant advantages in both performance and resilience: e.g. 
parallel data access, tolerance of downtime and hardware failure. It also 
pushes the preferred network-IO mode from Posix-like to object-like. This 
paper will describe the prototype’s architecture and its design choices, the 
performance in high concurrent throughputs and file/object operations, 
failure modes and their handling, data recovery methods, and administration.  

1 Introduction 
As the size of storage system increases, Erasure Coding (EC), in particular, cross node EC 
become important to meet the data safety requirement. The implementation of EC in XRootD 
[11] was initially developed at CERN [8] for the EOS Open Storage System [1]. At there, the 
XRootD client library uses the Intel Intelligent Storage Acceleration Library (ISA-L) [2] to 
place data blocks on multiple storage nodes. When writing a file “A” to an EC enabled 
XRootD storage cluster, the XRootD client will choose several storage nodes in the cluster, 
and a zip archive file with the same name “A” will then be placed on each of the nodes. The 
number of nodes chosen equals to the EC stripe size (number of data and parity chunks in a 
stripe, e.g. 8+3). Inside each zip archive file is a sequence of data chunks like obj.0.i, obj.1.j, 
obj.2.k, … where 0, 1, 2, … refer to the index of the EC stripes, and i, j and k refer to the 
index of data/parity chunk within an EC stripe (e.g. 0 to 8+3-1). If the remaining data at the 
end of a file is smaller than the EC strip size, empty zip archives will be added and will have 
no effect when calculate parity. The zip archive’s CRC32 feature is utilized to validate the 
integrity of the data chunks. Note that data and parity chunks in a stripe will be spread across 
chosen nodes in random orders. 

When reading “A” back, the XRootD client will find all zip archive file “A”s in the 
cluster, read the zip central directories from them and build a map of all data/parity chunks. 
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It will use the stored CRC32 to detect data corruptions, and when needed, perform error 
correction using the Reed Solomon algorithm [3] that was built in the ISA-L.  

2 Architecture Design of the XRootD Erasure Coding Prototype 
The prototype of an Erasure Coding XRootD storage system built at the SLAC National 
Accelerator Laboratory [9] aimed at implementing such a system in its simplest form, and 
yet support all WLCG storage system requirements. The prototype consists of two main parts: 
• A vanilla XRootD storage cluster at the backend, with no knowledge of EC. The only 

requirement is to have enough data storage nodes to spread the chunks in a data stripe 
on them. It can have more nodes than the EC stripe width. 

• One or more frontend nodes that run the XRootD proxy services. These nodes provide 
all the EC related functions, as well as the WLCG [10] data access and transfer functions. 
EC parameters such as data chunk size (usually ranging from 64k to a few MB), and 
stripe width (e.g. 8+3) are set on these nodes. These nodes can be independent, or they 
can form a proxy cluster. 

A vanilla XRootD storage with a user facing WLCG capable XRootD proxy service is a 
common installation at many research institutes. This prototype just adds the EC function on 
top of that.  

2.1 Design Choices and Features 

Several architecture design choices and implementation choices were made when building 
the prototype in order to keep it simple, easy to understand, easy to maintain and easy to use.  

2.1.1 Access Mode 

Since the EC functionalities are implemented in the XRootD client library as a plugin, it is 
possible for clients to directly load the plugin and access the vanilla XRootD storage cluster. 
However, this mode puts the burden of loading and configuring the plugin on the client, at 
both write time and read time. Since the client-side plugin is responsible for spreading the 
data/parity chunks, it is inefficient if the client and the backend storage are separated by the 
wide area network. This mode of operation is useful to perform administrative tasks within a 
LAN environment, but it is not attractive when used to provide user facing services. 
 For user facing services, a better architecture would be to put a XRootD proxy in between 
the backend storage and the clients. This is a common setting when the backend storage is 
behind a firewall. The proxy can be configured as an EC client to the backend storage (along 
with other functions to serve the WLCG requirements). In this mode, clients don’t need any 
special setting for EC, they don’t even have to limit themselves to only using the root 
protocol. This extra proxy service does introduce some performance penalty, which is 
discussion later in this paper. But overall, the benefit seems to overweight the performance 
loss, and hence this mode was chosen as the prototype architecture. 

2.1.2 Location to Set the EC Parameters 

The EC plugin needs to know a few parameters: The chunk size in bytes, the number of data 
chunks in a stripe, and the number of parity chunks in a stripe. These parameters can be 
obtained from the backend XRootD storage (if it is configured to supply them), or they can 
be set in the XRootD client configuration file. There are advantage and disadvantages in 
either way but they are mostly unimportant to this study. However, in order to use a vanilla 



 

 

XRootD backend storage without special configuration, this prototype put these parameters 
in the XRootD client configuration files.  

2.1.3 Choosing Storage Nodes and Locating Existing Files 

A XRootD storage cluster uses a redirector to glue all the data nodes together. The 
mechanism is usually lightweight. It is also quick to discover the first copy of an existing 
file. However, it will introduce a delay (a.k.a the “qdl” delay, default of 5 seconds [7]) if the 
file doesn’t exist, or if the locations of all copies are needed. The “location” refers to a list of 
all data nodes that host the same file.  
 The first scenario of delay happens when a new file is created, as XRootD needs to make 
sure it doesn’t already exist anywhere in the storage cluster. Though painful for users 
accessing the storage interactively, the past decade usage shows that this delay is tolerable if 
most of the accessing are via batch jobs or data transfer systems. 
 The second scenario of delay happens when an EC client needs to locate all zip archives 
of a file in order to read that file back. This delay will likely have significant negative impact 
to the reading efficiency of interactive users, batch jobs and data transfers. 
 There are two ways for an EC client to locate the needed zip archives: Have the EC client 
(the proxy) query via the redirector or have the EC client directly query the data nodes. 
Assuming that the “cost” of network latency in a LAN environment is a constant x, and the 
cost of doing a Posix stat() call on a data node is y. In a setup with stripe width of d+p (d is 
the number of data chunks and p is the number of parity chunks) and a XRootD cluster of m 
data nodes 
• The overall costs of query via redirector are x * [ 1 + m + (d+p) + 1 ] and y * m. Here 

the first “1” refers to the initial query traffic from the EC proxy to the redirector, and the 
last “1” refers to response traffic from the redirector to the EC proxy. “m” refers to the 
query from the redirector to the data nodes, and “d+p” refers to the response of data 
nodes to the redirector (data nodes without the zip archive file will not response. Posix 
stat() calls will be performed on all data nodes, and thus y * m. Note that these overall 
costs aren’t the measure of time, but the measure of total operations of two kinds. Some 
of the operations are performance in parallel, but they all induce load on the XRootD 
storage system. There are other, minor traffic between the “xrootd” and “cmsd” 
processes on the same nodes. Their costs are ignored in this discussion. Performing a 
query this way also suffers a “qdl” delay. 

• The overall costs of directly query the data nodes by the EC proxy are x* (1 + 1 + m + 
m) and y * m. The “1”s refer to EC proxy query to redirector to get a list of all data 
nodes, and the response. The first and second “m” refers to the query traffic from EC 
proxy to the data nodes, and the responses. The last “m” is the same as in the above 
paragraph (the Posix stat() calls). In this scenario, the “qdl” delay is avoided. 

With the first choice, the information is usually cached in the redirector for a while, which 
reduces the cost of an immediate query of the same file. No such benefit exists in the second 
choice, though it can be improved if a caching mechanism is developed.  
 For a storage cluster where m is not significantly larger than d+p, and mostly dealing 
with large data processing (where repeated access of the same file in a short period of time 
is rare), being able to avoid the “qdl” delay makes the second choice a clear winner. It is 
hence used in the prototype. 

2.1.4  Handling the Leftover Zip Archive Files and File Stat Info 

Sometimes a zip archive file was left behind on the XRootD storage cluster while all other 
peer zip archives files were deleted. This could happen when a data node was down during 



 

 

the deletion. Even worse, it is possible that the data node won’t come back online until the 
data file was recreated. In this case, there will be an extra zip archive file that isn’t compatible 
with all newly created zip archive files. To identity this leftover “debris”, a creation time info 
is recorded in the zip archive file’s extended attribute, serving as both the version info and 
mtime info of the file. Only zip archive files with the latest (and same) version will be used. 
Also recorded in the zip archive file’s extended attributes are the actual file size info, and 
checksum info. 

2.1.5 Providing a Consistent File View and Listing 

Users usual want to check what are the storage systems via a listing. In the case of EC enabled 
XRootD storage such as the prototype, the XRootD Posix layer was enhanced to aggregate 
the file metadata from the above extended attributes, and presents to the user a single file 
entry with the mtime and file size information. 

2.2 Understanding the Impact to Users during Failure 

The performance of the XRootD client library can be tuned via several Unix environment 
variables. These “parameters” are usually optimized for a WAN environment. For optimal 
performance in a LAN that links the frontend XRootD proxy and backend XRootD storage 
cluster, the prototype sets several parameters to values different from their defaults. Some of 
them affect what users will experience when a failure happens. In the case of an EC enabled 
XRootD system such as that in the prototype, when a data node’s xrootd process goes down 
unexpectedly: 
• A user who is reading from that data node will experience a freezing of 

XRD_CONNECTIONTIMEOUT * (XRD_CONNECTIONRETRY - 1) [4] seconds. 
After that, the reading will continue. 

• A user who is writing to that data node will see the writing continue for a while. But 
soon it will fail, likely with a “connection refused” error (when the failure happens 
during writing or file closing). 

• A user who initiates a writing within T seconds after a node went down may see writing 
failure, where T is larger of XRD_STREAMERRORWINDOW [4] seconds, and the 
XRD_CONNECTIONTIMEOUT * (XRD_CONNECTIONRETRY - 1) seconds. This 
is because it takes up to T seconds for the EC clients to be aware of the change.  

Negative impacts to users can be avoid in an orderly shutdown when a data node’s cmsd 
process is stopped first, followed by the xrootd process after seeing no connection to it. 

3 Prototype and Performance 
The EC enabled XRootD system prototype was setup with several goals: a) prove the system 
functionalities; b) understand the overhead of the chosen access mode, c) measure the 
performance of the chosen access mode, d) perform administrative operations. This section 
describes the prototype’s environment itself, as well b) and c). It does not discuss a) since 
that is self-proving by successful measurement in c). The last goal d) is described in the next 
section. 

3.1 The prototype Testing Environment 

The prototype consists of a backend XRootD storage cluster and a frontend XRootD proxy 
node: 



 

 

• The Backend XRootD Storage Cluster  
o 19 nodes of Dell 510 (9-year in service as of the date of testing), each has: 
o 24GB RAM, 1Gbps NIC, 12x 3TB HDD (some nodes have 11) 
o Each HDD presents itself to the operating system as its own SCSI device (via a LSI 

RAID controller) 
o CentOS 7 and XRootD release 5.3.4 (later upgraded to 5.4.0).  

• The Frontend XRootD Proxy 
o 60-core, 128GB RAM, 100Gbps NIC 
o CentOS 7 and an unrelease XRootD (main branch at 2021-12-17 and EC related 

private patches, this version is newer than XRootD 5.4.0). 
o EC configuration: 1 stripe consists of 8 data chunks and 2 parity chunks. The chunk 

size is 1MB.  
All measurements and tests were performed using the root protocol since that is where the 
EC client plugin was implemented. Since HTTP protocol is only used to provide user and 
application facing functionalities, it was not a focus of the test and measurement here. Though 
tests had been done using the HTTP protocol to verify that it worked as expected. 

3.2 Understanding the Overhead of Accessing Data via a XRootD Proxy 

There are two access modes described in section 2.1.1. To understand the overhead of using 
a XRootD proxy, the performance of a single 8GB file writing and reading were measured in 
each mode. In the case of writing, the input file is already in the client’s RAM disk and will 
be written to backend storage cluster’s page cache. In the case of reading, the data are already 
loaded into the backend storage cluster page cache and will be written to client’s RAM disk. 
This RAM-to-RAM test eliminates the performance impact of the (old) HDD.  

3.2.1 EC Client writing directly to XRootD Storage Cluster  

A typical client that directly uses EC to write to and read from a vanilla XRootD storage 
cluster would be a xrdcp [4] loaded with the EC client plugin. It was run in the frontend 
XRootD proxy. The following performance numbers of reported by the xrdcp tool. 
• Writing: ~904MB/s. The backend storage saw 904*(8+2)/8 = 1130MB/s. This is close 

to the wire limit. 
• Reading: 1017MB/s. This indicates that the EC client skipped the parity chunks because 

the network hardware limitation would not allow this speed if the parity chunks were 
also read. 

3.2.2 EC Client writing to XRootD Storage Cluster via an EC enabled XRootD Proxy 

A client in this case doesn’t load EC. It runs on another node with hardware and network 
configuration identical to the frontend proxy. It is also on the same subnet as the proxy. 
• Writing: ~900MB/s. This is identical to the performance above, indicating that the EC-

enabled XRootD proxy didn’t introduce a performance penalty. 
• Reading: ~95MB/s if XRootD Storage Cluster used async-IO in the root protocol, and 

~155 MB/s when sync-IO was used. The speed was further increased to ~505MB/s when 
the memory caching function (8MB page size, one page prefetching) was enabled in the 
XRootD proxy. 

The reading performance degradation is likely caused by the 2MB per file reading buffer 
allocated by the XRootD proxy. While this affects single file reading performance, it should 
still allow much higher aggregated throughput via parallel reading of many files. It is also 
possible to enable XRootD server’s maxi-buffers to bypass this problem but this was not ried. 



 

 

 Though using memory caching and prefetching would boost the reading performance 
(and could be used in production), it was not turned on throughout the testing (unless 
indicated) because memory caching effect was not part of this studying. Turning it on would 
also distort the performance measurement when concurrent reading of the same file happens. 

3.3 Aggregated Throughput via EC-enabled XRootD Proxy 

A list of 312 randomly chosen files with size ranging from 30MB to 1.1GB was loaded to 
the EC prototype, to be used to test the aggregated performance. The first test used 150 batch 
jobs, each read these 312 file 5 times (in the same order). Fig. 1 shows aggregated reading 
performance with and without memory caching. 
 

 
Fig. 1. Aggregated reading performance from the EC storage prototype. Network “out” means data 
being sent from the EC storage. The left peak was measured without using the memory cache, while 
the right peak was measured with memory cache turn on in the XRootD proxy cluster – the cache 
significantly reduced the amount of data being read from the EC storage. 
 
 The second test used 200 batch jobs, with each batch jobs randomly choosing 20 files 
from the list. Each file was read and then written back to another location in the EC storage 
prototype. Fig. 2 shows the aggregate reading and writing performance.  
 

 
Fig. 2. Aggregated and concurrent reading (“Out”) and writing (“In”) performance, the memory cache 
was turned off.  

3.4 Performance of Small File and Metadata Operations 

A set of 10,000 files, each 27KB, were prepared to test the performance of concurrent 
get/put/delete operations. For each type of test (get/put/delete), these 10K files were 
dispatched to 1 or 2 or 4 or 8… concurrent clients and run against the EC enabled XRootD 
proxy. The clients were run on the EC enabled XRootD proxy itself instead of in batch nodes 
(This is because the network security setting at the SLAC computing facility does not allow 
high frequency creation/demolition of TCP connections, as demonstrated below). Fig. 3 
shows that the performance of all three types of operations maintains constant as the number 
of client increase. The slow decreasing of performance toward 1000 concurrent clients could 



 

 

be caused by the limitation of the backend XRootD cluster, the limitation of the EC-enabled 
XRootD proxy, or most likely, because a single machine (the XRootD proxy) can’t efficiently 
handle 1000 simultaneous clients.  

 

Fig. 3. Performance of small file operations vs the number of concurrent clients. The clients 
all run on the XRootD proxy node to avoid being throttled by the network switch. 

4 Administrative Tasks and Tools 

Many of the administration tasks of a XRootD storage cluster remains the same even when 
EC is enabled. However, there are a several EC specific tasks: when a hard disk is lost, the 
data is still accessible, and a manual EC-rebuild can be initiated. The process toward an EC-
rebuild involves the following two steps: 

4.1 Identify the Lost Files 

A XRootD data node can be configured to use a name space and several data spaces on 
separate hardware [5]. Name space hosts symbolic links that point to data files in data space. 
Each data file (for EC, this refers to a zip archive file) contains an attribute pointing back to 
the name space. This safeguard mechanism can be used to either reconstruct the full name 
space, or identify what files resided on a lost data disk. 
 If both name space and a data space is lost, a brutal search of the whole XRootD storage 
cluster is needed to identity files that lost one of their zip archives. For this reason, it is 
important to put the name space and data spaces on separate hardware, and periodically 
backup the contents of the name space.  

4.2 Perform the EC-rebuild 

XRootDFS [6], which mounts a XRootD storage cluster as a file system, can be used for EC-
rebuild. The rebuild process can be performed with three simple steps: a) copy the file to a 
new file, b) delete the old file and c) rename to new file to the old file name. 

5 Limitation and Future Works 

An Erasure Coding storage system such as this prototype prefers users to treat it as an object 
store rather than a Posix store. The EC implementation allows partial Posix operations. For 
example, files can be opened in read-only mode or write-only mode but not in read-write 
mode. In read-only mode, reading a data range (including Posix vector reads) is supported, 
though sequential reading is the most efficient. In writing-only mode, a file cannot be 



 

 

overwritten or modified – an existing file has to be explicitly deleted in order to create a new 
file with the same name. Writing has to be sequential. These limitations suggest that generic 
object store get or put operations are preferred over Posix random IO pattern. 
 One improvement involves the mechanism described in section 2.1.3. A cache to store 
the file locations (a list of data nodes that have the corresponding zip archive files of a real 
file) will speed up repeated accessing pattern. The redirector’s CMSd process has a place to 
cache this info, or it can be cache by a dedicated caching service.  
 The EC client has an internal algorithm to spread new data files in a way that will help 
balance the free spaces among data nodes. Turning the algorithm (to work more or less 
aggressively) is possible but currently require a restart.  
 The s3 [12] protocol is one of the populate object store access protocols. Through 
XRootD’s HTTP plugin, it is possible to provide partial support of the s3 protocol. For 
example, it is possible to use a token for authentication, and perform object level operations 
such as get or put (though HTTP multi-part upload is not supported) or deletion. But bucket 
level operations are not supported because the current XRootD HTTP plugin returns 
information using HTML (to support web browsing) rather than XML, as required by the s3 
protocol.  

6 Conclusion 

This working prototype demonstrated a model of integrating the Erasure Coding capability 
in the XRootD storage cluster. From the users’ point of view, it is a standard XRootD based 
storage system that supports all WLCG authentication/authorization, data access and data 
transfer requirement. Internally, it provides cross-node EC capability for resilience, and it 
delivers reasonably good performance that can reach the hardware limitations. It is also 
relatively easy to manage. Several limitations and areas of future work have been identified 
and will be implemented as necessary.  
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