Experiences and developments of the RAL-LCG2 Tier-1 ob-
ject store ECHO in Run-3 and preparing for HL-LHC

J Walder"*, T Byrne!, A Dewhurst!, I Johnson', A Rogovskiy!, and J Thomas'
'STFC Rutherford Appleton Lab, Harwell, UK

Abstract. Data storage at the UK Tier-1 facility at RAL is provided through its
ECHO storage, serving the requirements for the WLGC and increasing num-
bers of other HEP and astronomy related communities. ECHO is a Ceph-
backed erasure-coded object store, currently providing in excess of 40PB of
usable space, with frontend access to data provided via XRootD or GridFTP,
using the libradosstriper library of Ceph. The storage must service the needs
of: high-throughput compute, with staged and direct file access passing through
an XCache on each workernode; data access to compute running at storageless
satellite sites; and, managed inter-site data transfers using the recently adopted
HTTPS protocol (via WebDav), which includes multi-hop data transfers to and
from RAL’s newly commissioned CTA tape endpoint. A review of the experi-
ences of providing data access via an object store within these data workflows
is presented, including the details of the improvements necessary for the tran-
sition to WebDav, used for most inter-site data movements, and enhancements
for direct-10 file access, where the development and optimisation of buffering
and vector read strategies is explored.

1 Introduction

The Rutherford Appleton Laboratory (RAL) plays a crucial role in supporting the data-
intensive requirements of the Worldwide LHC Computing Grid (WLCG). To facilitate ef-
ficient data access and storage for high-energy physics experiments, RAL has established
the ECHO [1, 2] infrastructure. This infrastructure combines the XRootD [3] and Ceph [4]
technologies to provide a robust and scalable solution for handling vast amounts of data.

One of the primary use cases is the distribution of experimental data generated at vari-
ous Large Hadron Collider (LHC) experiments, i.e. ALICE, ATLAS, CMS and LHCb. The
ECHO cluster employs XRootD as a high-performance data interface allowing researchers
worldwide to efficiently retrieve and replicate these datasets for analysis. To enhance data
redundancy and reliability, the ECHO infrastructure leverages Ceph’s distributed storage ca-
pabilities. This redundancy ensures that data remains accessible, even in the face of hardware
failures or other unforeseen issues.

In preparation for Run-3 of the LHC, and to prepare for the requirements of HL-LHC, a
number of optimisations and updates have occured since the original deployement of ECHO,
such as the migration [5] from GridFTP [6] to WebDav [7]. A review of the changes to ECHO
to meet these challenges that have been adapted so far, focusing on XRootD, is provided in
this note.

*e-mail: james.walder @stfc.ac.uk

2 ECHO and the Ceph storage cluster

ECHO is built on the Ceph distributed storage platform, which offers unified and scalable
storage capabilities. Ceph uses a distributed architecture consisting of storage nodes, known
as Object Storage Devices (OSDs), to store data. These OSDs are distributed across the
cluster for load balancing and redundancy.

To optimise storage efficiency, ECHO employs erasure coding (EC) techniques. This
method reduces data replication overhead while maintaining data integrity and availabil-
ity. Erasure coding is particularly useful for large-scale, exabyte-sized storage systems like
ECHO. For the data pools currently used by the major experiments, 8 + 3 EC is used.

At the time of writing, approximately 80 PB of raw storage is deployed for use, with
over 6000 OSDs across approximately 300 Storage Nodes (SN). A host level failure domain
is used, such that the distribution of data in placement groups across the OSD means that
failure of any single SN will not risk the integrity of the data.

3 XRootD and data access

While RAL and its ceph storage provides for CephFS, S3 and SWIFT endpoints, the data
stored for the experiments uses the ceph as an Object Store, interacting at the rados layer
using functionality provided by the libradosstriper [8] and XrdCeph [8] plugin to XRootD
(described below). The libradosstriper library adds a lightweight layer on top of rados inter-
face, allowing a file to be split into individual ceph objects with configurable object and stripe
sizes. While rados continues to manage the direct operations against ceph, libradosstriper
adds the additional functionality to manage the spliting and striping of data across these ob-
jects. libradosstriper provides for mostly atomicaly correct behaviour, however, and as will
be discussed below, due its locking and unlocking behaviour, the performance against small
reads is not optimal. In the case of high-energy physics applications, the majority of use-cases
are Write Once, Read Many (WORM) requests, and hence there is the scope for improved
efficiency under these scenarios.

In practice, with the implementation of ECHO, libradosstriper is configured such that a
file writen to echo is divided into 64 MiB ceph objects, with names suffixed with a 16-digit
0-padded hex number (incrementing by one for each object, separated by a dot to the original
file name) before being written into Ceph, and with the EC applied. Figure 1 illustrates the
way a typcial file would be stored on ECHO.

XRootD

(striper) dataset/filel.root

Cenh
SL?::?;S-) datases/file1.ro0t.0000000000000000 dataset/file1.root.0000000000000001 dataset/file1.ro0t.0000000000000002
feapes _ -_
iz e | o
[esd3z I e |

Figure 1. For a typical file on ECHO, the libradosstriper divides the file into (a configurable) 64 MiB
objects, with each object then being striped and erasure coded across the OSDs of the placement groups.

In Fig. 2, the distribution of data across OSDs and SNs is shown. In this example, a
10 GiB file is divided into 157 ceph objects, which are placed over 1400 OSDs on approx-
imately 230 SNs. i.e. data occupies approximately 6 OSDs per SN and correspondingly, a
large file is likely to be distributed across most of the SN in the ceph cluster.

Typical 10GiB file OSD usage per SN

Count

00 25 . 100 125 150 175 200

¢ #0755DSISN
Figure 2. For a 10 GiB file, a typical distribution of the number of OSDs that data is distibuted across
per storage node.

While Ceph provides the storage backend, an interface is required for clients to interact
with it. XRootD [3] provides a lightweight and flexible framework that satifies the needs
for WLCG and other communities. In addition, the XRootD plugin style design allowed
for the development of the XrdCeph plugin [8] (using libradosstriper) to bridge between
XRootD and the rados layer of Ceph. XrdCeph inherits from the XrdOss layer to provide this
interface, presenting a restricted set of access operations. For example, as an object store has
no direct concept of directory hierarchy, and as a listing over all objects in a (large) ceph pool
is prohibitly expensive, no possibly to list files is available. Similarly, as a rename operation
is effectively a copy with a new name, resulting in movement of data across to new OSDs and
placement groups, this is also a feature that is not supported.

4 Improving performance for Run-3 and beyond

With the evolution to Run-3, which includes improvements and updates in other layers of
the overall grid middleware, ECHO (including XrdCeph) has consequently needed to adapt
to these changes. These changes include the deprication of GridFTP, in favour of WebDAY,
resulting in signficant usage of XrdCeph compared to the GridFTP implementation [1, 9].
For transfers using the xroot protocol, XRootD now uses paged reads and writes. This is a
change that alters the reads and writes that were in (typcially) 8 MiB blocks, to reads and
writes of size < 100 kB. The motivation here from the developers is to add additional inflight
checksumming to identify and resend corrupted data at the small chunk-sized level, rather
than to wait for the checksum of the final transfer to discover potential data corruption. In
this case, with the design of libradosstriper and XrdCeph, small reads and writes are not
efficient against Ceph, due to its locking and unlocking behaviour.

Vector read operations' were not supported in the initial implementation of the Xrd-
Ceph plugin. As a consequence, each vector read operation resulted in unfolding each of
the batched set of reads into individual read requests, and hence suffered from significant
overheads.

Vector reads are typically used in direct access from jobs running on worker nodes to access directly only the
bytes of data that are useful for the client, rather than downloading the entire file. They are typically a single set of
batched byte ranges to be read.

To overcome these challenges and to continue to improve the throughput for Echo, two
strategies were deployed. Firstly, a simple buffering layer in XrdCeph was deployed, to
reduce the number of reads and writes made against Ceph (using the libradosstriper). For
reads, if the data for a requested byte range was not already not in the buffer, a request to
ceph is issued for a single read (the size of the buffer). Further contiguous reads for data that
exists within the buffer is then the returned directly from the buffer. Similarly, for writes, data
is written into the buffer, and once full, a single write is made to Ceph via libradosstriper,
ensuring that small writes are not propagated through.

Secondly, for reads, it would be possible to bypass the locking and unlocking behaviour in
XrdCeph, where significant overhead on small reads can be introduced, and additionally im-
plementing efficient vector read support at the rados layer [10] (rather than in libradosstriper).

4.1 Buffering in XrdCeph

The performance of introducing a buffer into the XrdCeph layer is showin in Fig. 3. For davs,
reads and writes are typically requested (within the XRootD framework) in 1 MiB blocks.
For root protocol transfers, these requests can range from approximately 64 kB for paged
requests to 8 MiB. The plots show the performance for single file transfers in a development
cluster environment. In production, a buffer size of 16 MiB was empirically found to optimise
throughput and memory usage. This approach is fully efficient (in terms of data read from
Ceph) for cases where the whole file is read. In cases where on small and sparse sections of
the file is read, this appoach can lead to inefficiencies in reading uncessary data. With this
buffering, no attempt was made to buffer explicit vector read requests for this reason.

Read speed vs buffer size Write speed vs buffer size

Protocol
— davs

Protocol

Speed [MiB/s]

o 20 40 100 120 0 20 a0

Buffersosize [Migl; Buffens'usize [MiaBU]
Figure 3. Performance of read (left) and write (right) speed for different sizes of XrdCeph buffer,
measured using root and davs protocols for a 1 GiB file. The lines represent the mean of the distribution
for each buffer size, and the colour bands indicate the statistical uncertainty.

4.2 Striperless reads and read vector implementation

The second strategy employed to improve throughput for both reads and vector reads (write
requests are not altered by these changes) was to avoid the use of the libradosstriper interface
— removing the locking and unlocking steps — and to implement efficient vector read support
in XrdCeph, using rados directly. Technicaly, some aspects of libradosstriper are reimple-
mented, such as the need to map between a read request’s byte offset and length, and map
this to the corresponding local offset and read length (noting that a read could cover multiple
ceph objects) of the (at least one) ceph object of the data written via libradosstriper. The

removal of locking for reads has very limited practical concerns, given the WORM nature of
operations.

In Fig. 4 the read data taken from Fig. 3 is shown, together with data taken using the
non-striper reads, for differing sizes of buffer. While the data suggests that the non-striper
implementation is most performant with no — or very small — buffer sizes, when tested in the
production environment, the large number of small reads could still have a negative impact
on the performance of the buffer, hence it is still useful to keep some degree of buffering.

Read speed vs buffer size

175 \/\
150 /\\/—\

Striper / Protocol

Speed [MiB/s]

o 20 40 60 80
Buffer size [MiB]

Figure 4. Performance of read speeds for different sizes of XrdCeph buffer, measured using root and
davs protocols for a 1 GiB file. In addition to the curves overlaid from Fig. 3, the effect of reads without
the libradosstriper are shown, also for various sizes of buffer.

For the vector reads, the set of reads (described by a list of offsets and read-lengths)
are mapped to their ceph objects, and a local set of offset and lengths. These sets are then
issued to ceph via librados in a batched operation. This replaces the default operation that
converts each chunk of the vector read into a single read, into a small set of batched read
requests. Figure 5 compares the performance between the default implementation and the
updated reads. The test procedure is as follows:

e For each test 32 processes are submitted simultaneously;

e Each process connects to the storage, executes 100 readv requests, then disconnects; the
procedure is repeated 10 times (i.e. each process submits 1000 readvs overall);

e Each individual readv request has 900 chunks;
e Chunks are distributed over 42 MiB;
e The length of every chunk is distributed between 1 and 1024 bytes.

The improvements are visible through both the lack of failed reads, and improvements in the
mean and meadian read times from 6.0 s to 1.1 s and from 0.84 s to 0.73 s, respectively.

5 Improving metadata operations for checksum requests

A request for a checksum (typically using the adler32 algorithm) can proceed in one of two
ways (assuming a valid file, etc.). Firstly, if no checksum has previously been computed the
file is read back to the XRootD gateway and the checksum computed. This computed check-
sum is stored in ceph as metadata on the first object of the file, and the resulting checksum
returned to the client. The time taken for this calculation is typically O(10) s/GiB. Secondly,
if there is a checksum already computed against the file, then the checksum is retreived from
the object metadata and returned to the client.

readv operations readv operations

104

10°

1024

state
= o

Count

104

LTI
0 100 200 300 400 500 600 700 800 0.0 25 5.0 7.5 100 125 150 175
duration, seconds duration, seconds

10° ‘ ‘

1004
L1l LIl

Figure 5. Performance of vector read operations on the original (left) and update (right) XrdCeph
plugin. State 0 and 1 represent successful and failed reads, respectively. The horizontal axis represents
the duration of each operation, noting the difference in scale between the two plots.

In ECHO, this is currently technically achieved via a call to an external python program,
which connects to Ceph via the rados client python bindings, performs the necessary oper-
ations and then disconnects from the cluster. While this is acceptable for cases where the
checksum needs to be computed from the file, the setup and teardown of the connection to
the cluster can introduce a significant overhead, when the checksum need only be retreived
from the metadata. To improve this, a client-server model is under development. A service
runs on each gateway host that already holds the connection to the ceph cluster, the client -
the external application called by XRootD - merely connects to the local server and request
the checksum for the given file.

In Fig. 6 a comparison between the current and development implementation is shown, for
the case of checksum retrieval from metatadata only. Other development options for check-
summing are also being considered, such as implementing checksuming with the XRootD
plugin framework, or, to implement on-the-fly checksumming via the HTTP plugins of
XRootD, which would avoid the necessity to re-read the data post initial write. A more recent
understanding of the XRootD code has highlighted a difference in scheduling of checksum
requests when an external program is used, compared to when the internal XRootD checksum
calls are used, the later potentially being scheduled immediately (in the case of a checksum
already stored in the metadata).

6 Resiliance and failover

A DNS round-robin was implemented (at the time of the conference) to distribute the load
across the XRootD servers (aka. Gateways) that act as the frontend to the ECHO cluster.
While this is a simple and effective solution, it does not accommodate for failure of an indi-
vidual hosts, or any active load balancing. An alternative approach is to use the CMSD service
provide by the XRootD software to actively manage the redirection between a frontend man-
ager and the server hosts. Figure 7 illustrates the current configuration that is expected to be
deployed into production shortly. A DNS round-robin entry point to two virtual floating IPs.
Using keepalived on two XRootD manager hosts to provide failover support in case one of
the managers fails. Using the managers and CMSD, the client is redirected to an appropriate
server to handle the actual transfer.

Checksum metadata retrieval duration

10 Checksum
Dev
Current

Normalised Count

. || |
107 | | ' | l I :
- - I

o 250 500 750 1000 1250 1500 1750 2000
Duration [ms]

Figure 6. Comparison of checksum metadata retrieval times using the current implementation and the
development client-server approach. Mean retrieval time is observed to improve from 450 ms to 150 ms.

alias.domain:1094

/

Floating IP Floating IP

4. control

keepalived
(running on the manager hosts)

all.role server all.role manager all.role manager all.role server

Figure 7. Illustration of clustered CMSD configuration using keepalived to provide manager failover.
Adapted from Ref. [11]. Although the figure shows two servers, in practice over 10 servers are con-
nected to the managers.

By transitioning from a DNS round-robin to actively managed CMSD setup it is hoped
that better resiliance against a problematic cluster will be established, and that active loadbal-
ancing will allow for an even distribution of throughput. Experience within the production
environment will be needed to optimise the tuning of the CMSD parameters and to demon-
strate these assertions.

7 Summary and outlook

In summary, the ECHO cluster, based at RAL, comprising of XRootD and Ceph, plays a piv-
otal role in supporting the data needs of the WLCG and other data-intensive organisations,
enabling efficient data distribution and archive, and ensuring data reliability. The combina-

tion of XRootD and Ceph technologies provides a versatile and scalable solution that aligns
with the demanding requirements of high-energy physics experiments currently at the LHC,
and to scale to HL-LHC requirements. While scaling of the storage volume itself, and the
horizontal scaling of the number of XRootD servers (acting as gateways) is necessary, it is
demonstrated that improvements to the architecture and internal software are also required to
provide an efficient, reliable, and cost effective solution. The improvements shown here for
read, write and metadata operations, together with improved failover and loadbalancing sup-
port, are largely already in place for production opperations, and are demonstrating improved
resiliance.

For the future, with increased operational experience of these recent changes, it is antici-
pated that there will be developments to the tuning of the CMSD, e.g. in the load-balancing
parameters, to better spread load across the hosts, and to improve the ability of XRootD to
failover bad gateway hosts. There are also ongoing studies on the performance of deletions.
As deletions occur in realtime, rather than as an asynchronous or metadata process, the client
waits for the successful deletion, which may take O(s) or longer in some cases. It is impor-
tant to charaterise the imapct on deletion rates at the levels needed for HL-LHC operations,
and to understand whether this can be met with horizontal scaling of the number of Gateway
hosts, or, if some further development will be required. With recent deeper understanding in
the scheduling of checksum requests within XRootD, futher optimisations to the checksum
operations may be possible and are under development. Lastly, the buffering layer has so
far been used to mainly mitigate the overheads of small read or writes. Improved buffering
may also offer significant opportunties to add a layer of latency ‘hiding’ between the backend
storage to the client, and may also be a source of further performance optimisation.

ECHO already supports LHC and other experiments, and will continue to grow to ensure
their future demands.

References

[1] A. Dewhurst, I. Johnson, J. Adams, B. Canning, G. Vasilakakos, A. Packer, The deploy-
ment of a large scale object store at the RAL Tier-1, in Journal of Physics: Conference
Series (IOP Publishing, 2017), Vol. 898, p. 062051

[2] Ellis, Katy, Brew, Chris, Patargias, George, Adye, Tim, Appleyard, Rob, Dewhurst,
Alastair, Johnson, Ian, EPJ Web Conf. 245, 04006 (2020)

[3] xrootd, https://xrootd.slac.stanford.edu/index.html

[4] ceph, https://ceph.io

[5] B. Bockelman, A. Ceccanti, F. Furano, P. Millar, D. Litvintsev, A. Forti, EPJ Web of
Conferences 245, 04031 (2020)

[6] W. Allcock, Gridftp: Protocol extensions to ftp for the grid (2001)

[7]1 E. Whitehead, M. Wiggins, IEEE Internet Computing 2, 34 (1998)

[8] S. Ponce, https://indico.cern.ch/event/330212/contributions/1718786/attachments/
642384/883834/CephPluginForXroot.pdf

[9] https://github.com/stfc/gridFTPCephPlugin

[10] T. Byrne, Optimizing Ceph 10 for High Throughout Particle Physics Workflows, https:
//static.sched.com/hosted_files/ceph2023/a4/Optimizing%20Ceph%?2010.pdf (2023)
[11] https://xrootd.slac.stanford.edu/doc/dev54/cms_config.pdf, Figure 1.1.1-2

