
Integrating FTS in the Fenix HPC Infrastructure

Shiting Long1,∗, Dirk Pleiter2, Mihai Patrascoiu3, Cristiano Padrin4, Michele Carpene4, Sergi
More5, and Miguel Carpio5

1Jülich Supercomputing Centre, Forschungszentrum Jülich, 52425 Jülich, Germany
2KTH Royal Institute of Technology, 10044 Stockholm, Sweden
3CERN, 1211 Geneva 23, Switzerland
4CINECA, 40033 Casalecchio di Reno, Italy
5Barcelona Supercomputing Center, 08034 Barcelona, Spain

Abstract. As compute requirements in experimental high-energy physics
are expected to significantly increase, there is a need for leveraging high-
performance computing (HPC) resources. However, HPC systems are currently
organised and operated in a way that this is not easily possible. Here we will
focus on a specific e-infrastructure that incorporates HPC resources, namely
Fenix, which is based on a consortium of 6 leading European supercomput-
ing centres. Fenix was initiated through the Human Brain Project (HBP) but
also provides resources to other research communities in Europe. The Fenix
sites are integrated into a common AAI and provide a so-called Archival Data
Repository that can be accessed through a Swift API.
In this paper, we report on our efforts to realise a data transfer service that allow
to exchange data with the Fenix e-infrastructure. This has been enabled by im-
plementing support of Swift in FTS3 and related software components. We will,
in particular, discuss how FTS3 has been integrated into the Fenix AAI, which
largely follows the architectural principles of the European Open Science Cloud
(EOSC). Furthermore, we show how end-users can use this service through a
WebFTS service that has been integrated into the science gateway of the HBP,
which is also known as the HBP Collaboratory. Finally, we discuss how trans-
fer commands can be automatically distributed over several FTS3 instances to
optimise transfer between different Fenix sites.

1 Introduction

Over the past decades, the performance of HPC systems has increased exponentially. This
remarkable progress has enabled scientific research in multiple disciplines that were and are
in need of immense computing power. During this period, it was typically sufficient to run
workflows within a data centre. As the range of HPC applications continues to expand, it
is unrealistic for HPC centres to fulfil the entirety of computational requirements, therefore
the workflows extend beyond one single data centre. This is in part driven by the need for
enabling international collaborative research. The European brain research community or-
ganised in the Human Brain Project (HBP) is one example. Another strong driver is the
growing trend towards a data-driven paradigm in scientific discovery, where overwhelming

∗e-mail: s.long@fz-juelich.de



sets of data are to be generated, curated, analysed and visualised [1]. This applies to various
science instruments that are in need of HPC for processing the data. This approach has been
pioneered by the radio astronomy community (see, e.g., [2]). In the upcoming High Luminos-
ity phase of the Large Hadron Collider (HL-LHC), the compute requirements of experiments
are expected to significantly increase such that HPC resources will be needed (see, e.g., esti-
mates from the Atlas experiment [3]). Serving distributed research communities with diverse
and data-intensive applications leads to the need for geographically dispersed resources that
are federated.

Fenix [4, 5] combines the services of 6 leading European supercomputing centres and
offers unified access for research communities. It is a federated e-infrastructure that provides
both computing and data services based on resources available at the involved European su-
percomputing centres. One step towards enabling the processing of experimental data within
Fenix is the realisation of a data transfer service that allows moving experimental data to
the relevant supercomputing centres and vice versa. More specifically, we consider the case
where the experimental data is stored in the ESCAPE Data Lake [6]. For this purpose, we en-
hanced the File Transfer Service (FTS), specifically its current iteration FTS3 [7] to support
Fenix storage services.

We start by providing some background in section 2 before explaining the details of our
implementation in section 3. In section 4 we report on a proof-of-concept setup. Next,
we discuss possible future deployments of FTS3 services within Fenix in section 5, before
presenting a summary in section 6.

2 Background

Fenix is a federated computing and data infrastructure based on a memorandum of un-
derstanding among BSC (Spain), CEA (France), CINECA (Italy), CSC (Finland), CSCS
(Switzerland), and JSC (Germany). Its creation is fueled by an increasing need for extreme-
scale computing power and storage requirements. The design process is catalysed by interna-
tional collaborations in science communities. Specifically, Fenix was initiated by the Human
Brain Project (HBP), a pan-European project aiming to 1) gain an in-depth understanding of
the complex structure and function of the human brain, and 2) develop a research platform
for brain science that is called EBRAINS.1

A key element of federation is a common Authentication and Authorisation Infrastructure
(AAI). The Fenix AAI follows the Authentication and Authorisation for Research and Col-
laboration (AARC) [8] blueprint architecture that is also the basis for EOSC. It is based on
an Identity Provider (IdP) Proxy that can propagate authentication requests to the supported
IdPs, validate authenticity against these IdPs, and eventually authorise access to Fenix ser-
vices. This essentially means that users can authenticate to Fenix AAI by authenticating to
any of its registered site IdPs. Each of the supercomputing centres provides an IdP service
and assigns virtual identities with the highest level of assurance. The EBRAINS IdP is also
supported as a community AAI, but the level of assurance is treated as low.

With the paradigm of cloud computing becoming more popular, numerous research en-
deavours have arisen to investigate the performance of HPC applications running on clouds
and have obtained promising results [9]. It is inevitable that HPC centres adopt the idea of
cloud abstraction and offer convenient on-demand services. However, coupling HPC and
cloud workloads under the same management for HPC centres may result in security chal-
lenges, particularly when granting unrestricted access to external networks. Thus, Fenix
divides computing and data services into two separate environments: HPC and Cloud.

1https://ebrains.eu/



In practice, Fenix abstracts its services on each site as follows:

1. Scalable Computing Services (SCC), which are massively parallel HPC systems for
scalable and/or compute-heavy applications;

2. Interactive Computing Services (IAC), which provide quick access to single com-
puter servers to analyse and visualise data interactively;

3. Virtual Machine (VM) Services, which deploy virtual machines via the OpenStack
platform;

4. Active Data Repositories (ACD), which are site-local data repositories close to the
HPC resources, and are typically POSIX parallel file systems based on Lustre or GPFS;

5. Archival Data Repositories (ARD), which are cloud object stores, for which currently
an OpenStack Swift interface is prescribed.

The SCC, IAC and ACD belong to the HPC environment, which is connected to a local
site network and requires SSH or similar secured access. The VM services belong to the
cloud environment, which is connected to the external network. The ARD can be accessed
from both HPC and cloud environments, making it ideal as a bridge for intra- and inter-site
communications.

Fenix addresses the challenge of sharing access to large-scale HPC systems by 1) sepa-
rating data storage into two layers (ACD and ARD), and 2) establishing ACD-to-ARD con-
nections within a site and ARD-to-ARD connections between different sites. A generic Fenix
use case is shown in Figure 1. The arrows in the data workflow depict data transferability,
whereas the arrows in the processing workflow indicate job execution and results retrieval.
The lines bridging the two workflows indicate the high I/O bandwidth connection between
ACD and HPC systems. Essentially, Fenix users may make use of available HPC resources
located at different sites in one scientific workflow with the help of the Fenix data services.

Figure 1: Fenix example use case

The Fenix data services are realised using two tools. One is the Fenix Data Mover, which
is based on a software named Nodeum developed by MT-C.2 It is designed with the goal of

2https://www.mt-c.com/



offering programmable, high-speed, scalable and secure data movement between ACD and
ARD. The other one is the Fenix Data Transfer Service, which orchestrates data transfers
between ARDs. We chose FTS, developed by CERN and well-recognised in the high-energy
physics communities, as the orchestrator. FTS has proven robust over the years and is compat-
ible with Fenix after some enhancements. Another benefit is that FTS is adopted worldwide
in various data centres, presenting collaboration opportunities with Fenix. We show such
potential in Figure 1 as extended data transferability to the ESCAPE Data Lake [6].

3 FTS enhancements

FTS is designed for distributing data across the WLCG infrastructure and it is a critical el-
ement for data management [7]. FTS comprises multiple components including 1) the FTS
server that schedules, optimises, and executes transfer jobs, and 2) the FTS REST server that
offers a RESTful interface for the submission and retrieval of transfer jobs. We refer to FTS
as the entire collection of its components if not specifying it as a server. FTS supports multi-
ple protocols thanks to the GFAL23 library. The FTS team has also released a Web interface
named WebFTS4 (currently maintained by EGI) for usage via browsers instead of a CLI.

FTS was developed for traditional grid infrastructures when X.509 certificate and pri-
vate key authentication were mainstream, whereas the trend of cloud computing has brought
HTTP token-based authentication to the stage centre. Therefore, FTS recently adopted the
support for OpenID Connect (OIDC) protocol [10], presenting a chance for Fenix AAI to
be integrated. Since cloud resources become increasingly attractive to computing facilities,
cloud object stores have become an interesting option for data management within WLCG
[11]. Efforts have been made for the integration of object stores within high-energy physics
workflows. This functionality is largely enabled by the HTTP library DaviX.5 It is used as
a plugin for GFAL2 and hence can be exploited by FTS. However, DaviX supported only
Amazon S3 and Microsoft Azure. Supporting access to Fenix Archival Data Repositories
required adding Swift API support in DaviX.

3.1 Authentication and authorisation

The authentication and authorisation process to transfer data with FTS in Fenix consists of
two parts: one with FTS and one with ARD, i.e., Swift object store. FTS leaves the user
authentication to other platforms, namely, it does not redirect the user to log in and eventually
grants access. Instead, FTS takes an OIDC access token, introspects it and accepts the transfer
job associated with it. When executing the job, FTS uses the access token to exchange for a
different access token which implies FTS is accessing the storage elements on behalf of the
actual user. Steps 2-4 in Figure 2 show this part of the authentication flow.

We register Fenix AAI with our FTS deployment such that the service can be accessed
by Fenix users and retrieve access tokens from the Fenix AAI (see Step 1 in Figure 2). For
strict CLI access, Device Code Flow [12] is the recommended authorisation grant to obtain
OIDC tokens. A common tool oidc-agent [13] (version ≥ 4.4.1) can be used in this case.
BSC has also implemented a simple website that displays an access token granted to the user
after they log in through a browser. With WebFTS supporting OIDC and Authorization Code
Flow [14], the complexities with tokens are hidden from the user and a standard log-in-to-use
model is applicable. WebFTS redirects the user to log in via Fenix AAI, receives an OIDC
access token from Fenix AAI and passes the token to FTS upon job submission.

3https://github.com/cern-fts/gfal2
4https://github.com/EGI-Federation/webfts
5https://github.com/cern-fts/davix



In a typical OpenStack deployment, Keystone is used as a site-local identity service. It
acts as a token server and issues a token upon successful user authentication. Based on that
token, the Swift object store may authorise access. This token is a Fernet token, which in the
following we call OS token.

There is a gap between an OIDC access token and an OS token. To enhance user experi-
ence, we do not require users to submit both OIDC tokens for authentication to FTS and OS
tokens for authentication to Swift. Therefore, we made use of the newly introduced OIDC
module for Keystone and implemented a method in FTS REST that exchanges an OIDC ac-
cess token for an OS token automatically, shown in Steps 5-6 in Figure 2. Lastly, FTS can
use the OS token for file management in Swift.

Figure 2: Token workflow of obtaining access to Swift object store with FTS in Fenix

3.2 File management with DaviX

We implemented file management methods with Swift API in DaviX. Basic functions such
as uploading, downloading and deleting files (objects in cloud terminologies) as well as ad-
vanced requests with checksum, stat and partial read are supported. We also enabled the Swift
Static Large Object (SLO)6 support for DaviX, namely, large files are uploaded in segments
to the Swift object store automatically to provide efficiency.

Similar to the cases with other cloud storage, specific parameters are to be given for
Swift when executing commands with DaviX. One requires an OS token for authentication
as specified in Section 3.1 and an OS project ID which indicates the storage space where the
file is. An example command to upload a file to a Swift object store would be:

davix-put --ostoken xxx --osprojectid yyy swifts://<path_to_file>

3.3 Data transfer with FTS/WebFTS

The Swift-specific parameters are likewise handled in GFAL2 and FTS. The ostoken (op-
tional in FTS because of Steps 5-6 in Figure 2) and osprojectid can be given in the com-
mands. Swift can be treated as a "protocol" for file management with the prefix swift. These
configurations can be inherited during a transfer job, starting from FTS and flowing through
GFAL2 until reaching DaviX, where the actual data is read and written.

6https://docs.openstack.org/swift/latest/overview_large_objects.html



WebFTS exploits the FTS REST API and can be seen as a front end of FTS. To en-
able Swift support in WebFTS as well, we added Swift-specific parameters management in
WebFTS and implemented additional APIs in FTS REST for Swift. The current capabilities
of WebFTS encompass a range of fundamental tasks including submitting, listing, and can-
celling transfer jobs. Additionally, a hierarchical presentation of files within the Swift object
store is available, facilitating the (multi-)selection of files during the job submission process.

4 Proof-of-concept setup

Fenix aims to implement a ground-level infrastructure for computing and storage by aggre-
gating the facilities and systems of the partner sites. It is a model that can be extended with
external platforms, providing a more powerful framework. Our attention is directed towards
the ESCAPE project, with a specific focus on enabling data transfer between the ESCAPE
Data Lake [6] and a Fenix ARD.

A proof-of-concept is accordingly proposed to bridge ESCAPE and Fenix. The use case
is defined as an ESCAPE user transferring data from an ESCAPE WebDAV server to a Fenix
ARD, and vice versa. With the help of Swift support and pre-existing WebDAV support in
FTS, we have successfully tested this functionality and we are federating the AAI services to
provide ESCAPE-Fenix interoperability.

ESCAPE AAI (a community AAI) and Fenix AAI (an infrastructure AAI) are both in-
volved in this use case. However, ESCAPE AAI is not fully integrated into Fenix AAI, i.e.,
both ESCAPE and Fenix resources are protected by their own AAIs. We drafted the proof-
of-concept minimising the alterations of the current ESCAPE AAI settings while enforcing
Fenix AAI to complete a federation between the two AAIs. In this case, users do not need to
provide credentials for both ESCAPE and Fenix when initiating data transfers.

This requires a more complex authentication flow than discussed in Section 3.1 as shown
in Figure 3. We use the term token when referring to OIDC access tokens. Furthermore, we
added the name of the AAI that issued the token. The key changes are the following:

• The ESCAPE AAI registers a client for Fenix AAI, which can introspect ESCAPE tokens
and perform token exchange requests.

• The Fenix AAI supports token exchange with ESCAPE AAI on the user’s behalf, i.e., a
token exchange request can be performed with Fenix AAI using an ESCAPE token.

Figure 3 shows the ESCAPE-Fenix token workflow, in which the renewed ESCAPE token
can be used to access the WebDAV server in ESCAPE and the OS token can be used to access
the Swift object store in Fenix. We omit the process of the user obtaining an ESCAPE token,
as it can be done similarly as in the case of Fenix.

5 Future deployment strategy

The current deployment of the Data Transfer Service in Fenix involves an FTS, an FTS REST
and a WebFTS server at BSC, all of which have adopted the enhancements discussed in
Section 3. This service supports Swift endpoints at BSC, CEA, CSCS and JSC. The ARD at
CINECA is expected to have an S3 interface, which is also supported by FTS. CSC joined
Fenix in 2021, later to the initial five partner sites. Its storage services are not integrated yet
and hence they are not within the scope of this paper.

Since Swift like other cloud object stores does not support third-party copy, deploying
only an FTS server at a single site would result in all data being transferred via this site
instead of taking a possibly more direct route from source to destination. Therefore, we



Figure 3: Token workflow of obtaining access to both ESCAPE and Fenix

Figure 4: Multi-site FTS deployment strategy

propose a setup that foresees FTS deployments at multiple sites as illustrated in Figure 4.
The information on the available FTS instances would have to be kept in an FTS registry,
which still needs to be realised. An enhanced version of WebFTS can fetch this information
and decide which FTS to use for a transfer job. This selection would primarily be based on
the source and destination of the transfer job such that inter-site network communication is
minimised. For instance, a transfer from CSCS to BSC in Figure 4 could either use the FTS
service at BSC or CSCS. The difference between the two FTS is trivial unless one of them
has a high load, in such case the vacant one should be selected. In the extreme cases where
both FTS are overloaded, FTS at another site may be chosen.

6 Summary and conclusions

The Data Transfer Service adopting the FTS stack has reached production in the Fenix re-
search infrastructure. It has successfully enabled data transfer between Swift object stores



located at various partner sites. It has ensured connectivity to multiple HPC systems together
with the Data Mover service.

In this paper, we showcase the enhancements made to the FTS stack to facilitate seamless
integration with Fenix. Additionally, we provide a comprehensive overview of the potential
extension of Fenix data services through a proof-of-concept. The future work includes the
proof-of-concept, realising the multi-site FTS deployment strategy and evaluating the overall
data transfer performance. We envision our services unlocking their full potential for diverse
scientific communities, particularly those reliant on HPC capabilities.

Acknowledgements

Funding for the work is received from the European Commission H2020 program under
Specific Grant Agreement No. 800858 (ICEI) and No. 945539 (HBP SGA3).

References

[1] A.J. Hey, S. Tansley, K.M. Tolle et al., The fourth paradigm: data-intensive scientific
discovery, Vol. 1 (Microsoft research Redmond, WA, 2009)

[2] K. Van Der Schaaf, C. Broekema, G. Van Diepen, E. Van Meijeren, Experimental As-
tronomy 17, 43 (2004)

[3] A. Collaboration, Tech. rep., CERN, Geneva (2022), https://cds.cern.ch/
record/2802918

[4] S.R. Alam, J. Bartolome, M. Carpene, K. Happonen, J.C. Lafoucriere, D. Pleiter, Com-
mun. ACM 65, 46–47 (2022)

[5] S. Alam, J. Bartolome, S. Bassini, M. Carpene, M. Cestari, F. Combeau, S. Girona,
S. Gorini, G. Fiameni, B. Hagemeier et al., Fenix: Distributed e-Infrastructure Ser-
vices for EBRAINS, in Brain-Inspired Computing, edited by K. Amunts, L. Grandinetti,
T. Lippert, N. Petkov (Springer International Publishing, Cham, 2021), pp. 81–89, ISBN
978-3-030-82427-3

[6] R. Dona, R. Di Maria, EPJ Web Conf. 251, 02060 (2021)
[7] A. Ayllon, M. Salichos, M. Simon, O. Keeble, FTS3: new data movement service for

WLCG, in Journal of Physics: Conference Series (IOP Publishing, 2014), Vol. 513, p.
032081

[8] A. Biancini, L. Florio, M. Haase, M. Hardt, M. Jankowski, J. Jensen, C. Kanellopoulos,
N. Liampotis, S. Licehammer, S. Memon et al., arXiv preprint arXiv:1611.07832 (2016)

[9] M.A. Netto, R.N. Calheiros, E.R. Rodrigues, R.L. Cunha, R. Buyya, ACM Computing
Surveys (CSUR) 51, 1 (2018)

[10] E. Karavakis, A. Manzi, M.A. Rios, O. Keeble, C.G. Cabot, M. Simon, M. Patrascoiu,
A. Angelogiannopoulos, FTS improvements for LHC Run-3 and beyond, in EPJ Web of
Conferences (EDP Sciences, 2020), Vol. 245, p. 04016

[11] A.A. Ayllon, M.A. Rios, G. Bitzes, F. Furano, O. Keeble, A. Manzi, Making the most
of cloud storage-a toolkit for exploitation by WLCG experiments, in Journal of Physics:
Conference Series (IOP Publishing, 2017), Vol. 898, p. 062027

[12] W. Denniss, J. Bradley, M.B. Jones, H. Tschofenig, OAuth 2.0 Device Authorization
Grant, RFC 8628 (2019), https://www.rfc-editor.org/info/rfc8628

[13] G. Zachmann, SKILL 2018-Studierendenkonferenz Informatik (2018)
[14] D. Hardt, The OAuth 2.0 Authorization Framework, RFC 6749 (2012), https://www.

rfc-editor.org/info/rfc6749


