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Abstract. The CERN Tape Archive (CTA) is the successor to CASTOR and
the tape backend to EOS. It was designed to meet the needs of archival storage
of data from LHC Run–3 and other experimental programmes at CERN.

In the wider Worldwide LHC Computing Grid (WLCG), the tape software
landscape is quite heterogeneous, but we are entering a period of consolidation.
A number of sites have reevaluated their options and are choosing CTA for their
future tape archival storage needs. However, CTA’s original mandate imposed
several design constraints which are not necessarily optimal for external sites.

In this contribution, we show how CERN has engaged with the wider HEP
community and collaborated on improvements which allow CTA to be adopted
more widely. We detail community contributions to allow CTA to be used as
the tape backend for dCache; to facilitate migrations from other tape systems
such as OSM and Enstore; and improvements to CTA building and packaging to
remove CERN-specific dependencies and to allow easy distribution to external
sites. Finally, we present a roadmap for the community edition of CTA.

1 Introduction

Until recently, the tape software landscape in High-Energy Physics was very heterogeneous.
In March 2021, a report on tape evolution [1] at the WLCG1 Grid Deployment Board, high-
lighted the diversity of tape software and disk frontends currently in use (Fig. 1).

Already by 2021, the situation was evolving. Several of the widely-used Free and Open
Source software solutions were at end-of-life. CASTOR—in service at CERN since the late
1990s [2]—had been replaced by the CERN Tape Archive (CTA) [3, 4]. Open Storage Man-
ager (OSM) [5] and Enstore [6] were no longer being actively developed. On the other hand,
changing licensing models and costs for commercial tape software were making that option
unattractive to many scientific institutes.

The tape software landscape has now entered a period of consolidation. Several sites have
evaluated CTA and decided to adopt it as the successor to their legacy systems. CTA is an
attractive choice for several reasons: it is Free and Open Source Software (FOSS), actively
developed by CERN, with a long-term roadmap; it uses a modern software stack, integrated
with the latest WLCG standards and protocols; it is performant, designed to meet the demands
of LHC data processing; and it includes a suite of operational management tools.
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Figure 1: WLCG Tape Landscape in 2021. Site names are listed across the bottom. Each column in the
figure represents the disk and tape software stack in use at each site.

Despite these advantages, there were certain obstacles to deploying and operating CTA be-
yond CERN. This paper describes how those obstacles were identified and overcome. The
rest of the paper is organised as follows: § 2 discusses the development work required to
make CTA usable at other sites. § 3 describes issues relating to software distribution and
deployment, in particular CERN-specific software dependencies. § 4 describes how CERN
supports operations at other sites. The paper concludes with a summary in § 5.

2 Making CTA usable beyond CERN

CTA was designed as the successor to CASTOR and as the tape backend to the EOS disk
system [7]. In this section, we discuss how these design goals facilitated—or hindered—its
use at external sites, and the problems which had to be overcome.

2.1 Migrating existing tape archives to CTA

To replace CASTOR, around 340 PB of data had to be migrated from CERN’s existing tape
archive. Physically copying this amount of data would have taken several years, with a major
impact on operations. Consequently, it was decided that CTA should use the same physical
tape format as CASTOR, so that migration could be a pure metadata operation [3, 4]. A set of
migration tools were developed to inject file and tape metadata from the CASTOR database
into the EOS namespace and CTA Catalogue.

A metadata-only migration is desirable for other sites, for exactly the same reasons. How-
ever, for most sites—apart from RAL, who were also migrating from CASTOR—their ex-
isting tapes were not readable by CTA. At a round-table with all stakeholders [8], it was
agreed that CTA should be able to read (but not write) data in non-native formats, in order to
facilitate migration, while writing all post-migration data in CTA’s native format.

2.1.1 Reading non-native file formats

CTA’s interface to the physical tape hardware (libraries, drives, cartridges) is handled by the
tape server daemon. The tape server would need to read two additional tape file formats:
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Figure 2: ANSI AUL tape data format [11] used by CASTOR/CTA, with descriptors for volume label
(VOL1), headers (HDR), user headers/trailers (UHL/UTL), end-of-file (EOF); tape marks (TM); and
the payload (DATA). Descriptors are stored in tape blocks of 80 bytes; for more details see [12].

OSM (tape backend to dCache [9]) and Enstore. There are two parts to the tape format:
volume label and file descriptors (Fig. 2). The volume label contains a unique identifier and
other tape-specific metadata. Enstore’s volume label is compatible with CTA; OSM has a
64 KB label with a different structure. The file descriptors contain metadata including each
file’s unique file sequence number and starting block ID, used to check that the tape head is
correctly positioned before starting a read/write operation. CTA has fixed-length descriptors;
the Enstore and OSM tape file formats are based on CPIO [10].

The CTA tape server now had to be modified to read the new tape formats. The code is an
evolution of the CASTOR Tape Server, which had been re-written and optimised in 2015 [13,
14]. Re-using the CASTOR code in CTA guaranteed compatibility with the CASTOR tape
format and included this recent performance optimisation work. However, it also brought
CASTOR’s legacy data structures with it. In CASTOR, all file reading and writing operations
were handled by the File C++ class. A single monolithic ReadSession method handled
checking tape volume labels, positioning, reading headers and reading the file. As this was
not easy to generalise to other tape formats, the code was refactored, with a new class for each
discrete operation (Fig. 3a). The three classes concerned with reading files—ReadSession,
HeaderChecker and FileReader—were specialised for each file format (Fig. 3b). (The
other classes do not need to be specialised as CTA writes files only in its native format).
Further implementation and testing details were presented at the 2023 EOS Workshop [15].

CTA not only has the capability to read tapes written by Enstore or OSM; the refactoring
work allows other tape file formats to be added as required. The last piece of the puzzle is to
populate the CTA Catalogue with the metadata for each migrated tape.

2.1.2 Migrating metadata

At CERN Tier–0, the CASTOR tape archive was migrated to CTA in two separate metadata
operations [4]: tape and tape file metadata migration from the CASTOR DB to the CTA
Catalogue DB; and disk file metadata injection into the EOS namespace.

Other sites migrating from CASTOR were able to use the CERN migration tools. RAL
took this opportunity to consolidate two CASTOR instances into a single CTA instance [16].

Sites migrating from Enstore or OSM had to develop their own metadata migration
scripts, using the CERN scripts as a template. For sites deploying CTA behind EOS, a
slightly-modified version of the EOS namespace injection tools is provided [17].

For migrations from Enstore, one item of metadata is missing: the block ID of each
file. CTA has the capability to seek by file sequence number (fSeq) or by the ID of the first
block in the file. Searching by block ID is more efficient, because the ID of the block at
the end of each tape wrap is stored in the cassette’s internal memory. Furthermore, CTA’s
Recommended Access Order feature [18, 19] depends on the block ID. As Enstore stores
only the fSeq, migrated files suffer a seek time penalty in CTA. In theory, the block IDs could
be subsequently entered in the CTA Catalogue, but as this requires positioning to every file, it
is unfeasible at the scale of the entire archive. The performance penalty for migrated files will
gradually disappear as the archive is repacked to new media written in CTA’s native format.
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Figure 3: Refactoring of the CTA Tape Server code to allow reading multiple tape formats

2.2 Choice of disk system

Some WLCG sites would like to use CTA with dCache [20] rather than EOS. In principle,
CTA is agnostic to the disk system in front. Whereas CASTOR was a Hierarchical Storage
Manager (HSM), including a persistent disk cache, CTA was designed as a pure tape archival
system, optimised for throughput. Disk functions are delegated to EOS, but a different disk
system can be used, as long as it provides the disk functions listed in Table 1. In practice,
CTA made a limiting assumption that the disk file ID would be a 64-bit unsigned integer (as
in EOS), which made it incompatible with dCache, which uses a (UUID-like) string.

Table 1: Mapping of tape system functions to software components

Function Software component
File Metadata Operations EOS (MGM/XRootD)
Namespace EOS (QuarkDB)
Disk Buffer for Staging EOS (FST)
Tape File Metadata Operations CTA (Frontend)
Archive/Recall Requests CTA (Scheduler DB)
Tape File Catalogue CTA (Catalogue DB)
Tape Operations (libraries, drives, cartridges) CTA (Tape Server)
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Figure 4: CTA Frontend Transport protocol. Payloads are Google Protocol Buffers; transport is XRootD
SSI (EOS) or gRPC (dCache). CTA Frontend request-handling code is common to both transport
protocols. cta-admin streaming and non-streaming commands are implemented for both protocols.

2.2.1 Type of the Disk File ID

The disk file ID problem was not as serious as it first appeared. CTA’s internal representation
was already a string, so changing the CTA Frontend protocol to also use a string was fairly
straightforward. However, there were several places in the CTA code where the string repre-
sentation was converted back into an integer: the command to list tape files and the “recycle
bin” tools to restore deleted files [17]. In order to decouple CTA from any specific disk sys-
tem, this functionality will be removed from the CTA Frontend and re-implemented in the
client-side tools. (An equivalent set of tools will need to be implemented for dCache).

2.2.2 CTA Frontend Transport Protocol

A second obstacle was the transport protocol between the disk system and CTA. There are
two types of request: (1) events from the disk system (“create”, “close write”, “prepare”,
“delete”), which enqueue a request to the CTA Scheduler and (2) requests from the CTA
command-line interface to control tape drives, configure tapepools and archive routes, man-
age queues or list tape and tape file metadata. For commands with an arbitrarily-long response
(such as listing files on a tape), the response is returned as a stream. Requests, responses and
stream items are all serialised using Google Protocol Buffers (protobuf) [21]. See Fig. 4.

The protobufs are transported using XRootD with the Scalable Service Interface (SSI) ex-
tensions [22]. XRootD SSI is performant and has the necessary functionality to handle both
request-response and streaming requests. However, the dCache XRootD client implementa-
tion does not include the SSI extensions. Conversely, the protobufs used for the payload have
their own native transport, Google Remote Procedure Calls (gRPC).

To avoid the dependency on XRootD SSI, it was decided to implement gRPC transport
for the CTA Frontend. A reference implementation was contributed by the dCache develop-
ers [9], including a proof-of-concept for gRPC streaming and Kerberos authentication, for
the CTA Admin commands. The CTA Frontend code was refactored to separate the trans-
port protocol layer from the unpacking of the protobufs and command dispatcher code. The
gRPC transport layer is currently being integrated with the CTA Frontend code base and will
be available in a future release.



3 CTA Software Dependencies and Distribution

The first CTA releases were source code only, which external sites had to compile and build.
This was challenging due to CTA’s dependencies on packages internal to CERN. An addi-
tional complication was that CERN used Oracle as its production database, but many external
sites do not have an Oracle license. This section describes how the CTA team responded to
the need for easier distribution and deployment.

3.1 CTA Catalogue Database

From its inception, CTA was designed to be agnostic to the database backend. While CAS-
TOR relied on Oracle-specific optimisations and PL/SQL, CTA’s strategy was to use only
standard SQL tables and queries, to maintain portability and avoid vendor lock-in [23]. Ini-
tially, CTA supported four DB backends: Oracle, PostgreSQL, MySQL and SQLite. Support
for MySQL was implemented by IHEP [3] but was dropped in 2021 when IHEP moved to
Postgres [24]. SQLite is used for unit tests and is not intended for production deployment.

Thus CTA now has two supported databases for production use: Oracle (used at CERN)
and PostgreSQL. The CTA Catalogue library depends on both database implementations,
even though only one will be used. This introduced a dependency on a CERN-specific Oracle
RPM which could only be distributed internally, for licensing reasons. In 2022, the code was
repackaged to remove this dependency in favour of the publicly-available Oracle RPMs. In
an upcoming release, the hard dependency will be replaced by a database backend plugin,
obviating the need to install Oracle RPMs for sites running Postgres.

One other notable development is a set of tools to manage the CTA Catalogue schema
upgrade procedure, to allow transparent upgrades on the CTA production service [25].

3.2 CTA Public Release

The CERN Tape Archive source code was released in 2016 under GNU GPL v3 [26]. Remov-
ing the dependencies on CERN-internal RPM packages was the first step to a public binary
release.

The CTA team now provides a public repository for all CTA dependencies [27] (except
Oracle libraries, which cannot be redistributed, as mentioned above). In 2023, the CTA team
announced [28] the first public binary release for CTA’s production deployment platform,
CERN CentOS 7. Binary releases for other RHEL versions and clones will follow in 2024.

4 CTA Operations and Support

4.1 CTA Operations Utilities

The CTA operations tools were originally developed for CERN internal use, but in response
to many requests, the CTA team have invested effort in generalising and packaging these tools
for use at other sites. The CTA Operations utilities [29] are a suite of tools for tasks such as
media lifecycle management, disk buffer management and monitoring (Table 2). The tools
are written in Python and available as pip packages, under a GNU GPL v3 license.

In addition to the code, the repository provides a selection of monitoring examples which
may be useful for sites with a similar setup to CERN [31].



Table 2: CTA Operations Tools.

Package Function
ctautils A collection of helpers and wrappers used across all operations tools
tapeadmin Library for interacting with CTA and tape infrastructure
ATRESYS Automated Tape REpacking SYStem [30]
ctaopsadmin Configurable wrapper for cta-admin and hardware interaction scripts
ctaopseos Tools for EOS–CTA interactions
poolsupply Automation for supply of tape pools with new cartridges
tapeverify Tools for automatic data integrity checks

4.2 The CTA Community

The CTA team organises an annual CTA Day co-located with the EOS Workshop [32]. At
the 2023 workshop, there was an active exchange of ideas, with six external sites sharing
their experiences with CTA. The collaboration between CERN and external sites is mutually
beneficial, as other sites contribute code (§ 2, 3), documentation [33], bug reports and fixes.
Support for external sites is provided through the CTA Community forum [34].

5 Summary

This paper describes the work done by the CTA team and contributors in the CTA Community
to make the CERN Tape Archive usable at WLCG Tier–1s and other sites beyond CERN.
The scope of the work includes: the ability to migrate existing data archives from legacy tape
systems; compatibility with other disk systems besides EOS; a choice of database backends;
and the CTA public binary release. In addition, we described how CERN provides support to
external sites through the CTA operations tools and the CTA Community.

DESY’s experience of migrating from OSM to CTA is published in [9]. We look forward
to similar reports from other sites in due course.

Future work includes full integration of gRPC support for the CTA Frontend, and a plugin
for the database backend. Additional operations tools will include the EOS–CTA namespace
reconciliation scripts [35] and tools for managing ACLs and tape drive metadata. In addition,
we plan to package the tools as an RPM, to allow them to be version-locked to compatible
CTA versions, for better management of external dependencies (not handled by pip).
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