An HTTP REST API for Tape-backed Storage

Jodo Afonso'*, Cédric Caffy', Mihai Patrascoiu', Julien Leduc!, Michael Davis', Steven
Murray', and Pablo Cortes'

LCERN, Esplanade des Particules 1, 1211 Geneva 23, Switzerland

Abstract. The goal of the HTTP REST API for Tape project is to provide a
simple, minimalistic and uniform interface to manage data transfers between
Storage Endpoints (SEs) where the source file is on tape. The project is a
collaboration between the developers of WLCG storage systems (EOS+CTA,
dCache, StoRM) and data transfer clients (gfal2, FTS).

For some years, HTTP has been growing in popularity as the preferred data
transfer protocol between many WLCG SEs. However — unlike other protocols
such as XRootD and SRM — HTTP does not include a method to stage files
from tape to disk prior to transfer, forcing the use of workarounds such as hybrid
protocols (different protocols used for the “stage” and “transfer” parts of the
operation). The HTTP REST API offers a simple and consistent solution, by
extending the HTTP protocol to include staging operations. It provides clients
with a common and consistent API across different storage systems to manage
and monitor the disk and tape residency of stored files.

In this contribution, we present the history and motivation of the HTTP REST
API project, the specification of version 1 of the API and implementation details
in the various storage and data transfer systems. We also describe our experi-
ence of its deployment and use for LHC Run-3 operations. We conclude with a
discussion of possible future work.

1 Introduction

The HTTP protocol is being used more and more within the Worldwide LHC Computing
Grid (WLCQG) [1] for data transfer between different Storage Endpoints (SEs). Unfortunately,
unlike the Storage Resource Manager (SRM) [2] and XRootD protocols [3], HTTP does not
provide a mechanism to handle tape-related metadata operations. Amongst the operations
not supported by HTTP we have: tape file disk staging (copying a file from tape into a disk
buffer, so that it can be directly read by the client—this is also known as bringOnline in SRM
or prepare in XRootD); tape archival tracking (checking if a file resides on tape and/or disk);
and tape-stored file disk eviction (delete the disk/buffer copy of a file that is already on tape).

The absence of these operations in HTTP forced users to put in place complex
workarounds. For example, by using HTTP—to perform data transfers between disk
instances—in conjunction to a different protocol (SRM or XRootD)—to perform tape-related
operations [4].

*e-mail: joao.afonso@cern.ch

Therefore, the main motivation for the WLCG Tape REST API was to simplify end-users’
life, by providing tape-related metadata operations via HTTP—in addition to the already
existing data transfer functionality.

In 2022, the WLCG Tape REST API work group concluded its efforts on a common
HTTP REST interface that allows clients to manage access to files stored on tape. This col-
laboration between the developers of the various WLCG storage systems (e.g. EOS+CTA
[5-7], dCache [8, 9], StoRM [10, 11]) and data transfer clients (e.g. gfal2, FTS [12, 13]) re-
sulted in a new protocol to be supported by all these storage archival services, finally allowing
all tape file transfer and management operations to be done with HTTP (the Tape REST API
reference document can be found on [14]). With this, both the SRM or XRootD protocols are
no longer a requirement for tape-related operations in WLCG.

At CERN, the HTTP Tape REST API has been added to EOS+CTA, thus allowing all
Tier-0 storage-on-tape operations to be controlled via HTTP. Its production deployment was
and is now being used for LHC Run-3 operations.

With this paper we will explain the motivation and use cases that lead to the specifica-
tion of the HTTP Tape REST API, followed by the details of how it was implemented in
EOS+CTA. We will then proceed with discussing our experience with deploying it for Run-3
operations and finally conclude with an overview of future work.

1.1 Previous work

The process that led to the creation of the HTTP Tape REST API started around 2018, with a
movement in the WLCG community to migrate disk-to-disk transfers to HTTP-TPC (HTTP
third-party copy). At the time, most WLCG Tier-1 transfers were using GridFTP, which
had to be deprecated (more details about this can be found on [15]). While most of WLCG
Tier-1 disk storage endpoints moved to HTTP-TPC early-on, the disk part of tape-endpoints
had to remain unchanged for a while waiting for extra development work (due to HTTP not
supporting tape operations).

Subsequently, a SRM + HTTP-TPC solution was put in place to replace SRM + GridFTP
[4] in Tier-1 tape-endpoints. This process occurred in 2020/2021 and required site-issued
tokens (most widely used implementation being macaroons [16]) plus support in FTS/Gfal2
and SEs [17]. Tape operations still had be done with SRM bringOnline [2].

Around 2022, CTA at CERN deployed direct HTTP access for the disk part of its Tier-0
tape-storage endpoints. Tape operations in CTA were still only possible with XRootD.

Finally, in 2021, discussions started to replace SRM tape operations with a Tape REST
API. This would finally allow all transfers—both disk and tape—to be managed with HTTP.
Both SRM and XRootD would no longer be required.

Initially, there was a proposal to extend the pre-existing dCache HTTP REST interface
with bulk operations (dCache Bulk Requests API). This project was not followed up, but its
details can be found on the WLCG DOMA meeting notes [18]. However, this served as a
kickstarting point for the WLCG Tape REST API project.

For Tape REST API the project to be completed, there were several differences between
WLCG Tape Storage Endpoints (SEs) that had to be discussed. In particular, the XRootD
based SEs didn’t work the same as SRM based SEs: for example, there is no support for
disk file pinning in XRootD (stage the file from tape and keep its disk replica for several
hours), while this is natively supported by SRM. Another difference is that dCache requests
are per-bulk based, while EOS+CTA/StoRM/FTS are per-file based.

It was therefore necessary to start discussing and implementing a new common WLCG
tape REST API interface that would allow to perform tape metadata operations regardless of
the underlying storage technology used by SEs.

2 Use cases

The HTTP Tape REST API provides a common interface for managing tape file metadata
operations purely with HTTP (the full specification—final output of the WLCG Tape REST
API work group—can be found in the Tape REST API Reference Document [14]). These
operations provide a mechanism for controlling and checking file residency on disk or tape.
By using the API, the client has control over the archival or retrieval of files from tape.

On EOS+CTA, the new HTTP Tape REST API has a similar behaviour to the previously
implemented XRootD protocol for tape file transfers. However, there are some significant
differences.

One important change—relevant for the remaining part of this paper—is the concept of
a Bulk Stage Request. On the HTTP Tape REST API, each stage request corresponds to a
named resource (the Bulk Request) that persists on the server side. They can be created, read,
modified or deleted using the corresponding HTTP methods. Since the list of files is stored
with the Bulk Request, the server only needs its Request ID to know the files it contains.

The EOS+CTA implementation of XRootD, on the contrary, does not store any Bulk
Request information: there is no object storing the list of files associated with each request.
Instead, the Request ID is assigned to the attributes of each one of the requested files. As
a consequence, it is not possible for the server to check the requested files based solely on
the Request ID (it would need to scan the metadata of all existing files). Instead, to track the
progress of one request with XRootD, the client needs to pass a list with the names of all
files, every time.

On the remaining parts of this section we summarise how both protocols compare to each
other on CTA+EOS.

2.1 Tracking file archival on tape

Both protocols can provide information about the progress of writing files to tape.

Use case XRootD HTTP Tape REST API
Check disk/tape xrdfs query prepare POST Japipv1/archiveinfo
residency of files being (dummy_id) /pathffilel.txt [with JSON containing list
archived to tape /pathffile2.txt ... of files]

In XRootD, the same command can be used to check both the progress of the archivals
and stagings of files to/from tape. In addition to this, when tracking an archival there is no
retrieve Request ID yet, which means we can set it as any dummy value.

In the HTTP Tape REST API, on the contrary, we just need to pass a json object contain-
ing the list of file paths.

For more details see also the specification document, section ARCHIVEINFO [14].

2.2 Staging a set of files from tape

Both protocols define mechanisms for managing the staging files from tape. A stage request
orders the Storage Endpoint to make the requested files available with disk-like latency, usu-
ally by copying them to a disk buffer.

Use case XRootD HTTP Tape REST API

Submission of a stage xrdfs prepare -s POST Japipvi/stage [with
request, containing /pathffilel.txt jpathjfile2.txt ... JSON containing list of files]
multiple files; as a result,
a (request_id) is

generated

Track the progress of a xrdfs query prepare GET

bulk-request (dummy_id) /pathffilel.txt Japipl/stage/(request_id)
/pathffile2.txt ...

Cancel multiple files xrdfs prepare -a (request_id) POST

from a stage bulk-request /path/filel.txt jpath/ffile2.txt ... Japifvi/stage/(request_id)/cancel

[with JSON containing list

of files]
Deletion of a - DELETE
bulk-request Japipl/stage/(request_id)

As mentioned before, the EOS+CTA implementation of XRootD staging is file-based
while the HTTP Tape REST API is bulk request based. However, it’s important to note that
XRootD does not necessarily forbid the usage of the Request ID for Bulk Requests. The
decision not to implement Request ID to File mapping was a design choice from EOS+CTA.

In the EOS+CTA XRootD implementation, the Request ID is simply compared against
the value previously stored in the attributes of each file that was referenced by the request.
This allows EOS+CTA to validate that the file was indeed affected by that request.

Since bulk-request resources do not exist in the EOS+CTA XRootD implementation it
has no concept for deleting them.

For more details see also the specification document, section STAGE [14].

2.3 Releasing staged files

Both protocols allow the client to indicate that they no longer require disk-like latency for the
staged files.

Use case XRootD HTTP Tape REST API

Evict tape-stored disk xrdfs prepare -e POST

copies from the disk /pathffilel.txt jpathffile2.txt ... Japiiv1/release/(request_id)

buffer [with JSON containing list
of files]

In the EOS+CTA implementation of XRootD the request ID is no longer associated with
the file after its staging has been completed. Therefore, only the list of file paths needs to be
passed.

In the HTTP Tape REST API the request persists until it has been explicitly deleted.
Therefore, a release request to it only requires the request ID.

For more details see also the specification document, section RELEASE [14].

2.4 Endpoint mechanism

In addition to the previous specifications, the HTTP Tape REST API requires the servers to
have a discovery mechanism, which allows the clients to find the URI endpoints of the API
(reference document, section Tape REST API discovery mechanism [14]). It is defined that
the .well-known endpoint is found by taking the WebDAV endpoint with the absolute path
[well-known/wlcg-tape-rest-api.

PrepareManager

+ prepare (XrdSfsPrep& pargs, XrdOucErrInfo& error,
const XrdSecEntity*client=0): int

initializeStagePrepareRequest (XrdOucString& reqid,
const common::VirtualIldentityé& vid): void
saveBulkRequest (): void

Exte]'nds

BulkRequestPrepareManager

- mBulkRequest: std::unique_ptr<BulkRequest>

+ prepare (XrdSfsPrep& pargs, XrdOucErrInfo& error,
const XrdSecEntity*client=0): int
+ getBulkRequest () : std::unique ptr<BulkRequest>

initializeStagePrepareRequest (XrdOucString& reqid,
const common::VirtualIdentity& vid): void
saveBulkRequest (): void

Figure 1: BulkPrepareManager class, which overrides some of the PrepareManager
methods — while reusing most of its functionality—in order to implement the support for
Bulk Requests.

3 Implementation in EOS+CTA

Considering that the handler for the XRootD "prepare” code already implemented most of
the logic required to stage a file from tape to disk, it was our intention to reuse most of it.
This was handled by the following XrdMgmO£fs member function in the EOS mgm node:

int XrdMgmOfs:: prepare (XrdSfsPrep& pargs,

XrdOucErrInfo& out_error ,
const XrdSecEntityx client = 0) { ... }

This function was only meant for XRootD usage and could not be easily repurposed. In
order to use it for the HTTP Tape REST API, we had to refactor it.

Our solution was to put the XRootD logic of the prepare() method into a class and
split the code into different protected methods, each one for one different step of the staging
process. Some of these methods could then be overriden by a subclass to implement the
HTTP Tape REST API unique features, while most of the parent class code is simply reused.

In practice, this corresponds to the template method design pattern, which allows us to
add functionalities to an already existing algorithm without having to change most of its
behaviour. Only a small number of the methods would need to be updated to accommodate
the new specifications. An example of this can be seen in Fig. 1.

Internally, depending on the protocol chosen by the client, either the implementa-
tion using PrepareManager or BulkPrepareManager will be invoked. Both of them
will end up using the same Workflow Engine (WFE) code [19] to establish the event-
based communication between EOS and the CTA Frontend, with the only difference that
BulkPreparelManager is able to handle bulk requests. Fig. 2 shows how this is implemented.

The BulkPreparelManager implementation is invoked by the XrdHttp plugin of the
XRootD framework.

3.1 Configuring the Tape REST APl on EOS+CTA

In order to work, the HTTP Tape REST API needs to be configured on the EOS MGM node.
This can be done by following the steps in the EOS online documentation [20].

XRootD HTTP S

‘_J

Prepare Prepare
WFE WFE

With Bulk
Request

-

=
e/ i
- Tape Archive

Figure 2: Diagram of Bulk Request implementation, which reuses most of pre-existing pre-
pare functionality.

4 Deployment for LHC Run-3 operations

The HTTP tape REST API was requested in production by these two LHC experiments at
WLCG Tier-0 (CERN):

e LHCb, which relies on HTTP archive transfers from WLCG Tier-1s to Tier-0. In partic-
ular, Rutherford Appleton Laboratory (RAL)—WLCG Tier-1 centre in the UK—needed
the Tape REST API to be deployed for the LHCb HTTP staging campaign planned for
February 2023.

e ATLAS, which is pushing to remove the dependency on SRM and a subsequent switch to
WebDAY, in order to ease transfers between cloud storage and WLCG endpoints.

4.1 Tier-0 LHCb migration

The switch to the HTTP Tape REST API in the Tier-0 CTA production instances first took
place on eosctalhcbh (EOS+CTA instance for the LHCb experiment). Without the API LHCb
Tier-1 to Tier-0 archive transfers were not being covered by the Check-On-Tape safety mech-
anism (checking that the file has a replica written to tape, therefore guaranteed to be safely
stored in CTA).

A workaround was possible where DIRAC [21] would submit a multi-step archive job
to EOS+CTA consisting of two jobs: (1) HTTP transfer to eosctalhch; (2) XRootD transfer
from eosctalhcb to itself with Check-On-Tape enabled, to confirmn that the file had been
written to tape.

However, this was difficult to perform and was not systematically used in production.
Switching to the HTTP Tape REST API made it possible to remove this complex multi-step
workaround and to add Check-On-Tape to all Tier-1 to Tier-0 transfers, because finally a
single protocol could be used for archival and Check-On-Tape.

In addition to the archive transfer logic simplification, Tier-1 transfers were sometimes
performed using the XRootD protocol (XRootD 3rd Party Copy (TPC) transfers with X.509
proxy delegation). This kind of transfer required the deployment of XRootD TPC gateways
for the eosctalhcb instance and introduced inefficiencies in the transfers. As a result, every
transfer needed to go through a set of gateways.

Therefore, switching to the Tape REST API in production allowed us to offer a single
efficient protocol that covers all CTA best practices.

The switch to HTTP with the TAPE REST API, in production, for the LHCb experiment,
took place on 20 March 2023.

4.2 Tier-0 ATLAS migration

The ATLAS migration was a full protocol switch from XRootD to HTTP, which allowed it to
preserve the previously supported functionalities. In fact, all ATLAS archive transfers were
already covered by Check-On-Tape.

In this case the Tape REST API brought HTTP features similar to the XRootD proto-
col. CTA Tier-0 was the first ATLAS Storage Element to be fully migrated to a HTTP-only
protocol.

After these two preparation steps, ATLAS moved all Tier-0 traffic to HTTP on 18 April
2023. We observed a full switch for both archive and retrieve transfers, with no loss of
transfer efficiency. Overall, it was a smooth experience.

5 Conclusion

In this work we started by explaining the HTTP Tape REST API, a common HTTP REST
interface for managing files stored on tape. This was the resulting work of the WLCG Tape
REST API group, which aimed to define a new protocol to be supported by the main WLCG
tape storage systems (EOS+CTA, dCache, StoRM) and data transfer clients (gfal2, FTS).

This framework was successfully concluded and is expected to be adopted by all these
storage systems, in particular the one which was the focus of this paper: EOS+CTA.

For the case of EOS+CTA, we showed how the HTTP Tape REST API was implemented,
by using the XrdHttp plugin of the XRootD framework, and reusing a large section of the
previous XRootD prepare() code. The parallelism—as well as the differences—between the
XRootD and HTTP implementations was also covered, with the observation that the most
significant difference is the adoption of bulk requests by the HTTP Tape REST API imple-
mentation, whereas the XRootD implementation is only file-based.

Overall, the HTTP Tape REST API is a natural consequence of a recent shift to HTTP-
centered protocols in the WLCG community. This contributes to closing the gap between
WLCG and the more general online community. In a time where the WLCG data is expected
to break new records in throughput and stored volume—and new tools are rapidly being
developed by the physics and online communities—it becomes important to fully support
HTTP for Tape operations. This will guarantee that EOS+CTA and other storage systems are
fully aligned in their objective of being reliable and flexible data storage systems in the future
of High Energy Physics.

5.1 Future work

In the future, it is expected that authentication and authorisation within WLCG will move
from X.509 certificates (signed with VOMS) to capability-based JSON Web Tokens (JWTs).
More information about these protocols can be found in [22]. Many transfers and tape stage
operations are performed via FTS [12, 13]. Therefore, to remove the WLCG dependency on
certificates, every component in the chain has to be adapted to token support, including both
FTS and EOS+CTA.

The token landscape is for the most part finalised with regards to disk-to-disk transfers,
with the involved players implementing the changes in preparation for the future WLCG Data
Challenge 2024 [23]. Token discussions with regards to tape operations are still in the early
stages. The process follows an iterative pattern and a number of upcoming revisions are
foreseen. As it stands, tape operations with token authentication are envisioned much later,
with discussion to pick up pace only after the WLCG Data Challenge 2024.

References

(1]
(2]
(3]

(4]
(3]

(6]

(7]

(8]

(9]

[10]
[11]
[12]

[13]

[14]
[15]

[16]

[17]

(18]
[19]

[20]

[21]

[22]

[23]

Worldwide LHC Computing Grid, http://wlcg-public.web.cern.ch/, accessed: Sep. 2023

SRM reference webpage, https://sdm.Ibl.gov/srm-wg/, accessed: Sep. 2023

A. Dorigo, P. Elmer, F. Furano, A. Hanushevsky, WSEAS Transactions on Computers 1, 348
(2005)

Forti, Alessandra, Tpc activities - future plans, https://indico.cern.ch/event/1089054/
Davis, Michael, et al., The CERN Tape Archive Beyond CERN, in CHEP (2023), to be published,
https://indico.jlab.org/event/459/contributions/11316/

A.J. Peters, E.A. Sindrilaru, G. Adde, EOS as the present and future solution for data storage at
CERN, in Journal of Physics: Conference Series (IOP Publishing, 2015), Vol. 664, p. 042042

E. Cano, V. Bahyl, C. Cafty, G. Cancio, M. Davis, O. Keeble, V. Kotlyar, J. Leduc, S. Murray,
CERN Tape Archive: a distributed, reliable and scalable scheduling system, in EPJ Web of Con-
ferences (EDP Sciences, 2021), Vol. 251, p. 02037

Litvintsev, Dmitry, et al., The Bulk service and WLCG TAPE API support in dCache, in CHEP
(2023), to be published, https://indico. jlab.org/event/459/contributions/11350/
P. Fuhrmann, V. Giilzow, dCache, storage system for the future, in Euro-Par 2006 Parallel Pro-
cessing: 12th International Euro-Par Conference, Dresden, Germany, August 28—September 1,
2006. Proceedings 12 (Springer, 2006), pp. 1106-1113

Vianello, Enrico, et al., A RESTful approach to tape management in StoRM, in CHEP (2023), to
be published, https://indico.jlab.org/event/459/contributions/11360/

L. Magnoni, R. Zappi, A. Ghiselli, StoRM: A flexible solution for Storage Resource Manager in
grid, in 2008 IEEE nuclear science symposium conference record (IEEE, 2008), pp. 1971-1978
Murray, Steven, et al., FTS Service Evolution and LHC Run-3 Operations, in CHEP (2023), to be
published, https://indico.jlab.org/event/459/contributions/11313/

E. Karavakis, A. Manzi, M.A. Rios, O. Keeble, C.G. Cabot, M. Simon, M. Patrascoiu, A. Angel-
ogiannopoulos, FTS improvements for LHC Run-3 and beyond, in EPJ Web of Conferences (EDP
Sciences, 2020), Vol. 245, p. 04016

Tape REST APl Reference Document, https://github.com/wlcg-storage/
wlcg-tape-rest-api/blob/main/WLCG_TapeRESTAPI_Reference_Document_v1.pdf

B. Bockelman, A. Ceccanti, F. Furano, P. Millar, D. Litvintsev, A. Forti, Third-party transfers in
WLCG using HTTP, in EPJ Web of Conferences (EDP Sciences, 2020), Vol. 245, p. 04031

A.P. Millar, O. Adeyemi, G. Behrmann, P. Fuhrmann, V. Garonne, D. Litvinsev, T. Mkrtchyan,
A. Rossi, M. Sahakyan, J. Starek, Storage for advanced scientific use-cases and beyond, in 2018
26th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP) (IEEE, 2018), pp. 651-657

Patrascoiu, Mihai, Srm - tape: gfalffts code changes plan, https://indico.cern.ch/event/
967159/

Millar, A. Paul, Future uniform tape access, https://indico.cern.ch/event/1006673/
Davis, Michael, et al., Eos+cta workflows: Tape archival and retrieval, https://indico.cern.
ch/event/985953/contributions/4238328/

Instructions: Enable Tape REST API on the MGM, https://eos-docs.web.cern.ch/
taperestapi/configuration.html

Fe. Stagni, P. Charpentier, R. Graciani, A. Tsaregorodtsev, J. Closier, Z. Mathe, M. Ubeda,
A. Zhelezov, E. Lanciotti, V. Romanovskiy et al., LHCbDirac: distributed computing in LHCb, in
Journal of Physics: Conference Series (I0P Publishing, 2012), Vol. 396, p. 032104

Bockelman, Brian, Analysis Facilities AAI, in CHEP (2023), to be published, https://indico.
cern.ch/event/1230126/contributions/5315413/

Mc Kee, Shawn, Dc24 planning and near term activities, https://indico.cern.ch/event/
1301513/

