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Abstract.
This work presents the design and implementation of an Open Storage System
plugin for XRootD, utilizing Named Data Networking (NDN). This represents
a significant step in integrating NDN, a prominent future Internet architecture,
with the established data management systems within CMS. We show that this
integration enables XRootD to access data in a location transparent manner, re-
ducing the complexity of data management and retrieval. Our approach includes
the creation of the NDNc software library, which bridges the existing NDN C++
library with the high-performance NDN-DPDK data-forwarding system. This
paper outlines the design of the plugin and preliminary results of data transfer
tests using both internal and external 100 Gbps testbed.

1 Introduction

The burgeoning complexity of data transfer and access calls for more agile and robust data
distribution paradigms. Named Data Networking (NDN) has emerged as a promising archi-
tecture that shifts the focus from "where" the data is located to "what" the data is, essentially
making the data itself addressable and routable [1]. Within the scope of the Software-Defined
Networking Assisted NDN for Data Intensive Experiments (SANDIE) project, we have pre-
viously investigated the integration of NDN into data-intensive research applications, illumi-
nating its potential benefits and existing limitations [2] [3].

One of the challenges identified during this exercise was the constrained throughput per-
formance offered by the standard NDN Forwarding Daemon (NFD)[4]. To overcome this
barrier, we sought to leverage the high-throughput capabilities of the NDN-DPDK forwarder
developed by the National Institute of Standards and Technology (NIST)[5]. However, we
also noticed a glaring lack of C++ libraries that can support this high-speed forwarder. To
address this gap, we developed a lightweight C++ library purposefully built to bridge the
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gap between the ndn-cxx library [6] and the high-speed NDN-DPDK forwarder. By bridg-
ing existing limitations and introducing new functionalities, the NDNc library [7] serves as
a pivotal step toward realizing the full potential of NDN as a high-throughput, efficient data
distribution architecture.

This paper outlines the substantial endeavor undertaken as part of the NDN for Data In-
tensive Science Experiments (N-DISE) [8] project, which unites researchers from prominent
institutions including Caltech, Northeastern University, Tennessee Tech, UCLA, and NIST.
Their collaborative mission focuses on the integration of a data distribution system based
on NDN for the CMS experiment conducted at the Large Hadron Collider (LHC) [9] that
culminated in the demonstration of high-throughput NDN-based transfer of CMS data over
a wide area deployment. Using applications developed using NDNc and the NDN-DPDK
forwarder, the demonstration achieved an average goodput of 83.2 Gbps and a maximum
goodput of 96.9 Gbps over an wide-area deployment.

The paper is structured as follows. In Section 2, we provide a concise overview of NDN
and the two fundamental entities central to any NDN data transfer process. Section 3 delves
into the design of the NDNc library, elucidating its capabilities and how it seamlessly inte-
grates existing NDN C++ libraries with the high-speed NDN-DPDK forwarder developed by
NIST. This section also outlines the architecture of two dedicated applications designed to
showcase the library’s performance. Moving on to Section 4, we expound upon the architec-
ture of the NDN-based Open Storage System XRootD plugin, elucidating its capabilities and
the array of supported functionalities, providing insights into their workings. In Section 5,
we unveil the preliminary results achieved by the NDNc applications when deployed over a
wide area network. To conclude, we offer an insightful discussion of our future development
and integration plans, followed by our overarching conclusions.

2 Named Data Networking

Named Data Networking [1] represents a significant departure from traditional Internet Pro-
tocol (IP) based network communication. Originating from the Information-Centric Net-
working (ICN) concept [10], NDN transitions from host-centric to data-centric networking.
In contrast to conventional IP networks, which prioritize addressing information to determine
where to fetch data, NDN prioritizes the content of data packets themselves, using their names
as the primary means of retrieval. This fundamental shift is facilitated by two types of pack-
ets: Interest Packets and Data Packets. Interest Packets, initiated by consumers or clients, act
as requests for specific data and carry the name of the desired data, functioning somewhat
similarly to queries in traditional network systems. Data Packets, on the other hand, are the
producers’ or servers’ responses to Interest Packets and contain both the requested data and
its name. These packets follow the path of the original Interest Packet to reach the request-
ing consumer. A unique aspect of NDN is its inherent ability to cache data at the network
layer. Intermediate routers within the network can store Data Packets, and when subsequent
requests for the same data arise, these routers can directly serve the data without engaging
the original data source. This feature inherently enhances data retrieval speeds, optimizes
bandwidth consumption, and increases overall system resilience. By prioritizing the content
of data packets, NDN provides a content-centric networking approach that holds immense
promise for revolutionizing data storage and retrieval systems like XRootD.

3 The NDNc library

To deploy an end-to-end solution for data distribution using NDN as the underlying archi-
tecture, we implement both a consumer and a producer application, the two fundamental
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Figure 1: Component diagram for the NDNc file transfer consumer application

entities in any NDN data transfer process. Our initial efforts, conducted within the SANDIE
project, highlighted the feasibility of NDN integration but unveiled limitations, notably con-
strained throughput attributed to the existing NFD forwarder [3]. To achieve exceptional
packet forwarding performance, we design our applications to communicate with the high-
speed NDN-DPDK forwarder developed by NIST, which has demonstrated leading through-
put performance using multi-threaded forwarding [5] [11].

One challenge with this approach is the lack of any NDN C++ library compatible
with this new forwarder. Therefore we developed our own lightweight C++ library called
NDNc [7] that bridges the ndn-cxx library [6] with the NDN-DPDK forwarder, while adding
a small number of common features needed by the consumer and producer applications de-
signed for transferring files or byte ranges from files. The NDNc library offers PIT token [12]
support (required for interoperability with NDN-DPDK), a memif -based face [13] capable of
providing efficient packet transmit and receive functions to and from a locally running for-
warder, an NDN packet encoder and decoder, Interest pipelining controlled by either a fixed-
window or a congestion-aware AIMD algorithm, and a GraphQL [14] client that can config-
ure the local forwarder by creating and deleting faces and registering Name prefixes [15].

Using NDNc, we have developed a file transfer consumer and producer for benchmarking
the performance characteristics of the library. The consumer and producer are deployed using
Docker containers [16]. Both entities follow a predefined naming scheme, and use the same
name prefix. There are two types of Data Packets that can be requested: one for retrieving
file information (or metadata) and the other for retrieving the file contents. Upon receiving
an Interest Packet, the producer parses its name in order to extract the file path and the type
of data it requests. For file information, the producer calls the POSIX stat system call on
the file path and then embeds the answer in a common Metadata [17] object in NDNc for
better encoding and decoding. In the case of Interests requesting content from the file, the
producer calls the POSIX read system call to obtain the desired range of bytes from the file,
as specified by the segment number in the Interest name.



The producer application runs in the network indefinitely, constantly waiting for new
requests, while the consumer initiates a file transfer and then terminates. On initialization,
the consumer uses the GraphQL client to configure a new interface with the local forwarder
and then requests metadata information about a file passed as an input argument via the
command line. If the requested file is found, the consumer constructs two worker groups,
one for sending Interests and one for receiving Data Packets and assembling the result. The
Interest Packets are passed to the pipeline that manages the congestion window and then to
the local face that encodes the Interest to NDN L2 packets and finally sends the packets to the
forwarder through the memif interface. The data is decoded from L2 and then passed to the
receiving worker group. The pipeline takes care of NACK packets and timeouts. Once the
file transfer is complete, the consumer destroys its face with the forwarder. The components
of the file transfer consumer application are shown in Figure 1.

4 The XRootD NDN based Open Storage System plugin

To ensure a seamless transition for end-users from the existing CMS architecture to an NDN-
based system, we have integrated NDN via an Open Storage System (OSS) [18] plugin tai-
lored for the XRootD framework [19]. The OSS plugin facilitates the specialized implemen-
tation of a logical file system, wherein the operations of the logical file system are adeptly
translated into actions tailored for the inherent storage system. Constructed using a C++
programming interface recommended by XRootD developers, each function in this plugin
reflects the calls of the POSIX file system. The plugin manifests as a shared library, exporting
the XrdOssGetStorageSystem symbol which the framework leverages for its loading.

The file transfer application discussed earlier, and the OSS plugin both operate on the
same foundational logic in managing and translating POSIX file system calls. This logic
takes the shape of an NDN consumer encapsulated in the lib/posix module of the library.
However, their purposes diverge: the file transfer application is crafted to exemplify the opti-
mal performance capabilities of applications built with NDNc, whereas the XRootD plugin is
conceived to realize a file system as envisioned by the framework’s developers. Both entities
nonetheless employ the same producer application which persistently operates, responding
to requests within the NDN network. For effective communication, every entity must utilize
a consistent NDN Name prefix. In NDNc, the default prefix value is set to “/ndnc/xrootd”.
However, the plugin, file transfer consumer application, and the producer can be reconfigured
through command-line inputs or configuration files to adopt an alternate prefix.

The NDNc POSIX consumer extends its support to integral file system calls for reading
files and directories, encompassing open, opendir, fstat, read, readdir, and close.
These filesystem calls for specific file paths are converted into Interest Names. The open and
fstat functions are managed identically, with the NDNc API maintaining flexibility in the
sequence of their calls. On the receipt of a request for either function, an Interest Packet
is created, targeting Metadata retrieval from in-network producers. For instance, meta-
data regarding the file located at /path/to/foo.root is identified by the Interest Name: “/ndnc
/xrootd/path/to/foo.root/32=metadata”. Should the file remain inaccessible to any net-
work producer, an application-level NACK response will be returned and the consumer will
take appropriate action either by sending a refreshed version of the initial Interest Packet or
by signaling an error to the higher levels of the application. In successful cases, the meta-
data, encapsulating comprehensive details about files or directories, will be enveloped in a
Data Packet echoing the name of the requesting Interest. This Metadata [17] object includes
essential details like atime, btime, ctime, and mtime, pivotal for data packet versioning
within the network. A significant Metadata component is the maximum payload size, an
adjustable attribute on the producer’s end, defining the payload limit of a Data packet.



This payload dimension is crucial for file read operations. Invocations to this method
specify both the file path and the byte range of interest. Depending on the byte range size
and the producer’s maximum payload size, these calls may be converted into one or multiple
Interest Packets. In NDNc, the default size stands at 6144 bytes, with the maximum NDN
packet size being 8800 bytes, inclusive of the packet’s name, NDN metadata, and signature.
Interest Names for byte range requests adhere to a specific format: “/<ndn-name-prefix>
/<file-path>/v=<version>/segment=<number>”. As an illustration, a request for the
initial 64 bytes from a file (version 2) would be structured as: “/ndnc/xrootd/path/to
/foo.root/v=2/seg=0”. The directory reading logic remains largely unchanged, with the
exception that the consumer retrieves full directory contents until the final Data Packet, or
FinalBlockId [20], is received. This data is then stored persistently, with subsequent di-
rectory read calls only requiring iteration to relay the next directory entry to the application’s
higher levels.

For the OSS XRootD plugin, the file system’s realization is based on the C++ interface
provided by XrdOssDF [21] available in the framework’s source code. The files are handled
by the XrdNdnOssFile and the directories by the XrdNdnOssDir part of the lib/xrdndnoss [7]
module in NDNc. Both classes capitalize on the same consumer instance to maintain a sin-
gular congestion window, overseeing all incoming and outgoing traffic from the plugin.

5 Performance Analysis and Results

The file transfer consumer developed for showcasing the performance of the NDNc library
was first tested and demonstrated at the International Conference for High Performance Com-
puting, Networking, Storage, and Analysis (SC22) [22] incorporated with the NDN-DPDK
forwarder. For the SC22, we deployed a high-bandwidth wide-area network (WAN) testbed
connected with VLANs across the United States to evaluate the NDN applications’ perfor-
mance. During SC22, we performed multiple tests with various parameters and topologies
as Figure 2 shows. To gain a clearer understanding of the test findings, we will outline a few
representative results.

We first tested the performance of the NDNc library for retrieving files at Caltech. On
the same host machine, using Docker containers, we’ve deployed the NDN-DPDK forwarder
configured with seven forwarding threads and eighteen NDNc file transfer consumer appli-
cations. Each consumer was requesting one file at a time, each file having a size of 1 GB
and a CMS name. All the files were cached in advance in DRAM by the forwarder and all
consumers were configured identically: using the AIMD congestion control algorithm with
an initial window size of 8192 packets. During a five minute test, we achieved an average
goodput of 83.2 Gbps and a maximum goodput of 96.9 Gbps with an average delay of 1 ms.
This was the first real-world demo of an NDN application achieving a maximum throughput
speed close to 100 Gbps.

For the following two tests performed at the conference, we have used the same config-
uration for both the NDNc file transfer consumer applications as well as the NDN-DPDK
forwarder: the consumers were configured to use a fixed congestion window size algorithm
with a capacity of 8192 packets, while the forwarders were running six forwarding threads.
The transferred files were cached in advance in DRAM by the forwarder and had same size
and names used for the first test. Also, the lifetime of Interest Packets was set to 500 ms
(exceeding this time before receiving a Data Packet in response would have triggered send-
ing refreshed Interests until a retry limit would have been reached causing an error on the
consumer side). The second test scenario was on a two-node linear topology from Caltech
server where the clients were running to a Starlight (Chicago) server where the NDN-DPDK
fileserver application [11] was residing. The two servers were connected via a 100 Gbps
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Figure 2: N-DISE results of NDNc goodput over WAN at Supercomputing Conference 2022

tagged VLAN link with a round-trip time (RTT) of 45 ms. During this analysis, we managed
to achieve an average goodput of 42.1 Gbps and a 49.6 Gbps maximum goodput with 87 ms
average delay. For the final demonstration, we have used two client nodes: one settled at
the SC22 booth in Dallas and one at Starlight in Chicago, and one producer node at Caltech.
All three nodes were connected by 100 Gbps tagged VLAN links with 33 ms RTT between
Caltech and Dallas and 45 s RTT between Caltech and Starlight. The cumulative average
goodput achieved was 49.6 Gbps, while the maximum value was 62.9 Gbps with 66 ms aver-
age delay. The final two tests were the first to showcase these high-throughput speeds over
the WAN of any NDN application.

During SC22 we successfully conducted comprehensive testing of the XRootD OSS plu-
gin. For these particular tests, we used the two-node linear topology from Caltech, where the
XRootD server was running, to Starlight, where the producer together with the NDN-DPDK
forwarder that had all the files pre-cached in advance were residing. The two servers were
connected via a 100 Gbps tagged VLAN link. The OSS plugin was configured to use an
AIMD congestion control window with an initial size of 32768 packets and 2000 ms lifetime
for each expressed Interest packet. During tests that lasted more than one hour, we have used
the xrdcp [23] command-line tool to copy both files and directories of files in order to test
the throughput performance of the plugin. We have managed to achieve an average goodput
of around 5 Gbps which is in line with the performance of a single NDNc POSIX consumer.
Improvements on this front are discussed in Section 6.

6 Conclusions

This work presents the NDNc library that bridges the existing NDN C++ API developed by
the community with the high-performance NDN-DPDK forwarder as well as the integration
of the NDN primitives with the legacy XRootD framework through an OSS plugin. The new
NDN file system implementation can provide location transparent data access and simplify
the XRootD’s data location services that are currently implemented through a set of redirec-
tors [24]. Both NDNc and the XRootD plugin are still in the development stages and we are
looking forward to further increase their capabilities by:

• Adding multi-threaded support to the memif interface. Currently, the shared memory in-
terface is the only transport type supported in NDNc and applications developed using our
library need to have a running NDN-DPDK forwarder on the same host machine. During



the SC22 experiments, we demonstrated great throughput capabilities of our applications
and the forwarder, but we needed to run multiple consumers in order to achieve high num-
bers. The limitation comes from the memif interface implementation, which currently is
single-thread. The forwarder shows that it is capable of delivering 100 Gbps throughput,
but a single NDNc consumer is limited to around 5 Gbps. By adding multi-threaded sup-
port, we would be able to scale the throughput speed of one consumer with the number of
threads.

• Adding asynchronous support to the file read implementation of the XRootD plugin. The
framework offers support for async calls, an option that can be enabled through the con-
figuration files at startup. At Caltech Tier2 [25], XRootD is configured to run async reads,
which in theory should bring a bit more performance while lowering the CPU usage, thus
we need to add this support to our lib/posix module in NDNc.

• Finalizing the work on the OSS plugin by adding support to all file system calls, not only
those required to read files and directories.

The XRootD plugin is currently under extensive testing and comparisons with other stor-
age solutions used at CMS are ongoing (i.e., HDFS, Ceph, XCache). These results will be
critical in determining our next steps in development. For all analyses done in this paper,
we made use of the NDN-DPDK fileserver application [11]. Although this served us well,
we would like to extend our own producer application developed on NDNc, which would be
capable of taking advantage of the file systems where the original data resides.
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