
Data Popularity for Cache Eviction Algorithms using Ran-
dom Forests

Olga Chuchuk1,2,∗ and Markus Schulz1,∗∗

1CERN, IT Department, Geneva, Switzerland
2Inria, Côte d’Azur University, Sophia Antipolis, France

Abstract. In the HEP community the prediction of Data Popularity is a topic
that has been approached for many years. Nonetheless, while facing increas-
ing data storage challenges, especially in the upcoming HL-LHC era, there is
still the need for better predictive models to answer the questions of whether
particular data should be kept, replicated, or deleted.
Caches have proven to be a convenient technique for partially automating stor-
age management, potentially eliminating some of these questions. On the one
hand, one can benefit even from simple cache eviction policies like LRU, on
the other hand, we show that incorporation of knowledge about future access
patterns has the potential to greatly improve cache performance.
In this paper, we study data popularity on the file level, where the special rela-
tion between files belonging to the same dataset could be used in addition to the
standard attributes. We turn to Machine Learning algorithms, such as Random
Forest, which is well suited to work with Big Data: it can be parallelized, is
more lightweight and easier to interpret than Deep Neural Networks. Finally,
we compare the results with standard cache eviction algorithms and the theoret-
ical optimum.

1 Introduction

The advancement of scientific research heavily relies on the efficient analysis of vast amounts
of data generated by experiments in various domains. In the domain of High Energy Physics
(HEP), the Worldwide LHC Computing Grid (WLCG) has been the essential infrastructure
for processing and analysing data at the exabyte scale that has been produced by the Large
Hadron Collider (LHC) experiments [1].

Traditionally, analysis jobs on WLCG use the local grid analysis mode [2]. Data is repli-
cated or transferred to the processing site before computations begin, requiring extra attention
and effort to track the location of data and replicas to ensure proper handling throughout the
analysis process. Instead of pre-replicating or moving data, remote computation analysis
mode autonomously fetches required data over the WLCG network, streamlining data pro-
cessing. The remote computation analysis mode enables the usage of WLCG sites without
permanent data storage. These sites function as processing units with temporary storage for
currently working data, which is perceived as a cache for primary storage, simplifying site
operation compared to those with permanent storage while also distributing workloads.
∗e-mail: olga.chuchuk@cern.ch
∗∗e-mail: markus.schulz@cern.ch



The efficacy of this cache system depends on its size and the cache eviction policy, which
is an algorithm that decides which files to remove when it reaches full capacity. Our research
explores the use of Machine Learning (ML) techniques to enhance cache eviction algorithms
in the WLCG context. Rather than training the ML model to directly decide which files to
evict from the cache, we take a two-stage approach. In the first stage, we use ML models
to forecast future file reuse patterns. Armed with these predictions, we move to the second
stage, where we integrate them into our cache eviction policies as essential parameters. This
ensures that we leverage the strengths of both ML predictions and cache eviction algorithms,
resulting in a more refined and robust caching system. By combining Belady’s algorithm [3]
and the Random Forest ML model’s predictive capabilities [4], we aim to develop a more
efficient and adaptive cache eviction policy that aligns with our ultimate goal of optimizing
data retrieval and storage efficiency within the WLCG infrastructure.

Roadmap. The remainder of this paper is structured as follows. Research motivation and
previous work are outlined in sections 2 and 3, respectively. Specifics of the ML-based so-
lution are described in section 4, including the architecture, training and integration. Results
are discussed in section 5. Finally, section 6 concludes the paper.

2 Motivation

For our cache study, we focused on analyzing user read requests for physics data analysis,
since these requests are the least predictable part of storage access. In the context of WLCG,
this corresponds to Analysis Object Data (AOD) and Derived AOD (DAOD) files [2]. We
generated a trace of data read accesses specific to the ATLAS experiment [5], covering the
time period from February to April 2022, using the CERN Data Center ATLAS EOS node [6].
The trace includes 5.6e8 read accesses, 1.2e7 files, and 2.9e5 datasets1.

Our workloads and grid infrastructure are distinct from many existing caching studies,
which usually cover content delivery networks (CDNs) and web environments (Web). Specif-
ically, in our case, we deal with large-scale file sizes (see figure 1), a smaller number of users,
and, consequently, profoundly different user access patterns (see figure 2). These unique char-
acteristics indicate the necessity for the development of cache eviction policies tailored to our
specific workload requirements.

Another key distinction lies in the optimization goal. While most of the scientific research
papers deal with cached objects of the same size and, therefore, focus on optimizing File
Miss Ratio (FMR) [7], our data involves considerably large file sizes with a wide distribution
(figure 1). Hence, we are primarily interested in optimizing Byte Miss Ratio (BMR) - a
metric that takes into account the impact of file size on cache performance. It is determined
by dividing the total number of bytes that result in cache misses by the total number of bytes
requested from the cache.

3 Previous work

LRU (Least Recently Used) is a commonly implemented and lightweight cache eviction pol-
icy [8]. In figure 3, we observe how BMR changes for LRU depending on the cache sizes,
which are measured as a percentage of the total volume of unique files seen in the trace. As
the cache size increases, the BMR metric decreases rapidly and eventually reaches an asymp-
tote, representing the best possible performance any cache eviction policy can achieve on the
given trace. This asymptote is determined by the number of cold misses, which indicates

1In ATLAS, analysis files are organized into datasets representing meaningful sets of data.



Figure 1. File size distribution.
Average file size: 2.13GB.
Maximum file size: 51.30GB

Figure 2. File popularity
(excluding files with zero
accesses).
Maximum access count:
152,742.
The inset graph zooms in on the
1 to 2,500 range.

the proportion of unique volume to the total requested volume, effectively representing the
performance of an infinite-size cache.

LRU demonstrates commendable performance with favourable ease of implementation
and maintenance. However, it raises the question of whether a better BMR can be achieved
through the adoption of alternative cache eviction policies.

Figure 3. Visual comparison of
non-ML cache eviction policies:
LRU, 2-LRU [8], Belady’s [3],
Dataset Evict LRU, and
PFOO-U.Bytes (a lower bound
of the theoretical optimum) [7].



To explore the performance boundaries, we examine PFOO-U.Bytes [7], representing a
tighter lower bound for BHR than an infinite-size cache [9]. In figure 3 it is marked as "Op-
timum (Lower bound)". Comparing PFOO-U.Bytes to LRU, we observe a noticeable scope
for improvement, particularly for smaller cache sizes (less than 30% of the total volume).

In an attempt to close this gap, we have previously explored existing state-of-the-art poli-
cies, such as 2-LRU [8], MRU [10], GDSF [11], and a modification of AdaptSize [12] suit-
able for our case. Moreover, we have tailored cache eviction policies specific to our types
of workloads, such as Dataset Evict LRU and Dataset Evict MRU [7], which leverage the
observation that files within a dataset are often read together during analysis jobs. Despite
our extensive exploration and efforts, we were unable to surpass the performance of LRU in
previous attempts (see "2-LRU" and "Dataset Evict LRU" on figure 3 as an example).

4 ML-based solution

4.1 Architecture

A theoretical policy capable of predicting future file read accesses with certainty would be
able to identify the optimal file for eviction at each step. When files have the same size,
this policy is straightforward - it selects the file that will be accessed farthest in the future
(known as Belady’s algorithm [3]). However, when file sizes are different, determining the
best eviction strategy becomes more difficult and is an NP-hard problem.

Intriguingly, on our trace, we discovered that Belady’s algorithm behaves nearly optimally
for our data, as depicted in figure 3. It is important to note that this algorithm is purely
theoretical and requires knowledge of future file accesses, making it impossible for real-
world implementations. For our caching solution, we decided to combine the nearly optimal
performance of Belady’s algorithm with the potential of Machine Learning models. This led
us to adopt a two-stage architecture:

Firstly, we train a Random Forest ML model (RF) [4] using historical data to forecast
future file read accesses. Secondly, we use the predicted access information to guide cache
eviction decisions. Specifically, we incorporate the predicted time (or probability) of file
reuse into our caching model. This integration enables us to make informed choices about
cache eviction, prioritizing the removal of files less likely to be needed shortly.

Contrasting with existing efforts within the WLCG community, such as those employing
Reinforcement Learning for caching tasks ([13]), our approach adopts the RF model. We
favoured RF due to its ability to effectively handle both classification and regression tasks,
along with its capability to be parallelized. Additionally, this algorithm provides interpretable
insights into feature importance, making it a valuable tool for our analysis.

4.2 Training Random Forests

For constructing the features and target, we partitioned the data based on a time threshold, di-
viding the trace into approximately 75 and 15 days (corresponding to 79.33% and 20.67% of
all read accesses, respectively). We tailored 18 features, including file and dataset sizes, fre-
quencies, recency of file accesses, read access durations, and dataset-related characteristics.
We opted to predict the logarithm of the reuse time, rather than the raw value, to facilitate in-
terpretation and distinguish between files that will be reused within different time thresholds.
The computational task remained nearly the same. The feature-target selection and the use
of features not present for all files resulted in a reduction of the available data for training.
Starting with over 10 million files, this filtering process resulted in 342,878 files (only 2.89%
of the original number) containing all the necessary features for training the ML model.



In addition to the regression task, we reformulated the prediction objective as a binary
classification task - determining whether a file would be read in the next 15 days. We used the
same RF model architecture and features as in the regression task. After a slightly different
filtering stage and an additional stage of balancing the prediction classes, the classification
dataset comprised approximately 686,942 files, accounting for 5.79% of the original number.

We employed Root Mean Squared Error (RMSE) as the evaluation metric for regres-
sion, and both RMSE and Area Under the Receiver Operating Characteristic Curve (AUC-
ROC) for classification. The use of RMSE as a regression-specific metric was justified by
the caching model’s utilization of the exact predicted probability, rather than the class, which
we will demonstrate in subsection 4.3. Conversely, AUC-ROC is a standard classification-
specific metric, indicating the quality of the True Positive Rate (TPR) vs. False Positive Rate
(FPR) trade-off.

Through model tweaking and hyperparameter tuning, we achieved encouraging results,
summarized in table 1 ("Previous Results"). The proximity of the training and test results
indicate minimal overfitting. These compelling results validate the effectiveness of the ML
approach and pave the way for enhancing our cache eviction policies.

Table 1: ML model performance comparison

Previous Results Updated Results
Regression
RMSE on the training data (70%) 0.29 0.43
RMSE on the test data (30%) 0.34 0.46
Classification
RMSE on the training data (70%) 0.11 0.19
RMSE on the test data (30%) 0.12 0.19
AreadUnderROC on the training data 0.99 0.98
AreadUnderROC on the test data 0.99 0.98

To gain insights into the Random Forest models’ workings, we examined the feature
importance, a valuable attribute that RF provides. Figure 4 demonstrates the top 5 features
based on their importance for each ML model. This metric is derived from how frequently a
feature is chosen for a node split and the resulting decrease in impurity at the decision tree
nodes. The higher scores indicate a more substantial impact on the model’s predictions.

Figure 4. The top 5 features
ranked by their feature
importance for regression and
classification models.

We made several interesting observations from the feature importance analysis. First,
dataset-related features hold significant importance in both models. This suggests that the



dataset a file belongs to substantially influences its likelihood of being reused. Additionally,
recency-based features, such as the last file and dataset read access times, play a critical role
in models. They indicate a file’s relevance and potential future reuse.

4.3 Integration into the caching policies

To extend the applicability of our ML models to the entire read access trace, we retrained
them to operate with a reduced set of features: file size, time of last read access, duration of
last read access, dataset size (volume), dataset size (number of files), and time of last dataset
read access. Despite the reduced feature set, the adapted models still demonstrated robust
performance in both regression and classification tasks (see table 1, "Updated Results"). The
minimal decrease in performance indicates the resilience and flexibility of the RF models,
allowing them to effectively handle the limited number of available features.

To incorporate predictive capabilities into the cache eviction algorithm, we implemented
the "watermarks" method, which allows the cache’s size to fluctuate within adjustable thresh-
olds - a high watermark (set at 95%) and a low watermark (set at 80%). The high watermark
ensures sufficient cache space for incoming files during the prediction process, preventing po-
tential disruptions. Meanwhile, the low watermark serves as the limit for the cache purging
process. To select watermark levels, we consider the rate at which incoming requests arrive
to maintain adequate space between cleanups and the time required to complete predictions,
requiring careful balance to prevent limiting the cache size.

Employing the watermarks approach for cache management effectively reduces CPU
overhead by decreasing the frequency of cache cleanups (see Table 2) while minimally im-
pacting system performance (see Figure 5). Furthermore, the watermark-based model conve-
niently integrates predictive models. Machine learning predictions are only triggered when
the high watermark is reached, thus improving caching system performance. At this point, the
predictive process runs for all cached files, which are subsequently sorted based on predicted
reuse. For regression, sorting is done by predicted reuse distance, and for classification, by
reuse probability within two weeks. Files are then purged until the low watermark is reached.

Figure 5. Visual comparison of
the basic LRU and Belady cache
eviction policies with their
watermark-based counterparts
(Wmk).

5 Experimental Results and Discussion
The results depicted in figure 6 reveal that the classification model performs somewhat better
than the regression model, but still falls short of outperforming LRU. One possible explana-
tion for the classification model’s superior performance could be attributed to the fact that



Table 2: Watermarks implementation (Classification model)

Cache Size Number of Cache Cleanups Simulation Time (min) Average RMSE
100% 0 13 -
72% 4 16 1.61
36% 18 20 1.79
18% 53 25 1.94
9% 136 36 1.99
4% 319 57 2.12
2% 724 101 2.39

with small cache sizes (2-5%), the distinction between files likely to be reused within several
days versus several weeks or more becomes more crucial. In this context, the classification
approach is better equipped to handle such distinctions.

Figure 6. Visual comparison of
LRU and Belady
watermark-based models, and
models integrating regression
and classification predictions,
along with the theoretical
optimum lower bound.

Additionally, we conducted an analysis to understand why predictors with favourable
scores did not lead to significant improvements in the cache eviction policy. It became evident
that the performance of the trained models on the actual full trace was considerably worse
than on the test data. Specifically, the average RMSE of the regression model for each cache
size was notably higher than the RMSE of 0.46 obtained on the test data (as demonstrated in
Table 2).

Several factors contribute to this discrepancy. Firstly, the model’s training exclusively
relied on files created within the restricted time frame. Moreover, a significant portion of files
within this short time window were used only once (approximately 60%), a scenario that a
regression model alone cannot adequately capture. Additionally, the training data underwent
specific feature/label cuts, diminishing the diversity of training entries, and the prediction was
constrained to a 15-day timeframe.

These findings reveal the limitations of our current implementation while highlighting
several directions for further enhancing the ML-based solution, such as expanding the train-
ing dataset and optimizing model hyperparameters. This would allow the models to learn
from more diverse and extensive data, which overall can lead to better predictive capabilities.
Additionally, by exploring different ML model combinations, one could potentially find more
effective ways to leverage the predictive power of ML for cache management.



6 Conclusions

After analysing cache eviction policies in the WLCG framework, the Least Recently Used
(LRU) policy emerged as the most robust and efficient choice, despite exploring modern
Machine Learning models for prediction. The feature importance distributions of the ML
models revealed the significance of file recency and popularity, supporting the efficacy of
recency-based eviction policies. Additionally, dedicating resources to optimizing eviction
policies for minuscule cache sizes may not be practical in highly loaded distributed systems.

Despite not surpassing LRU’s performance, the predictive model coupled with
watermark-based implementation showcases a promising approach for cache eviction in the
context of WLCG. By leveraging the predictive power of ML models and optimizing the
cache cleanup process, our approach demonstrates the potential to enhance caching efficiency
and reduce unnecessary cache evictions, ultimately benefiting the overall performance of the
caching system. Furthermore, the model’s capacity for generalization over extended periods
would allow for a comprehensive understanding of global access patterns. Its lightweight
nature also permits periodic retraining, ensuring its adaptability and relevance over time.

References

[1] Tech. rep., CERN, Geneva (2022), https://cds.cern.ch/record/2802918
[2] I. Bird, F. Carminati, R. Mount, B. Panzer-Steindel, J. Harvey, I. Fisk, B. Kersevan,

P. Clarke, M. Girone, P. Buncic et al., Tech. rep. (2014)
[3] L.A. Belady, IBM Systems journal 5, 78 (1966)
[4] L. Breiman, Machine learning 45, 5 (2001)
[5] A. Collaboration, G. Aad, E. Abat, J. Abdallah, A. Abdelalim, A. Abdesselam, O. Ab-

dinov, B. Abi, M. Abolins, H. Abramowicz et al., The atlas experiment at the cern large
hadron collider (2008)

[6] G. Adde, B. Chan, D. Duellmann, X. Espinal, A. Fiorot, J. Iven, L. Janyst, M. Lamanna,
L. Mascetti, J.M.P. Rocha et al., Latest evolution of EOS filesystem, in Journal of
Physics: Conference Series (IOP Publishing, 2015), Vol. 608, p. 012009

[7] O. Chuchuk, G. Neglia, M. Schulz, D. Duellmann, Caching for dataset-based work-
loads with heterogeneous file sizes, in ISGC 2022-International Symposium on Grids &
Clouds 2022 (2022)

[8] V. Martina, M. Garetto, E. Leonardi, A unified approach to the performance analysis of
caching systems, in IEEE INFOCOM 2014-IEEE Conference on Computer Communi-
cations (IEEE, 2014), pp. 2040–2048

[9] Q. Huang, K. Birman, R. Van Renesse, W. Lloyd, S. Kumar, H.C. Li, An analysis
of Facebook photo caching, in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (2013), pp. 167–181

[10] N. Guan, M. Lv, W. Yi, G. Yu, ACM Transactions on Embedded Computing Systems
(TECS) 13, 1 (2014)

[11] L. Cherkasova, Improving WWW proxies performance with greedy-dual-size-frequency
caching policy (Hewlett-Packard Laboratories Palo Alto, CA, USA, 1998)

[12] D.S. Berger, R.K. Sitaraman, M. Harchol-Balter, {AdaptSize}: Orchestrating the Hot
Object Memory Cache in a Content Delivery Network, in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17) (2017), pp. 483–498

[13] T. Tedeschi, M. Baioletti, D. Ciangottini, V. Poggioni, D. Spiga, L. Storchi, M. Tracolli,
Journal of Grid Computing 21, 42 (2023)


