
Towards a new conditions data infrastructure in ATLAS

Evgeny Alexandrov1, Luca Canali2, Davide Costanzo3,∗, Andrea Formica4,∗∗, Elizabeth
J.Gallas5,∗∗∗, Mikhail Mineev1, Nurcan Ozturk6,∗∗∗∗, Shaun Roe2, Vakho Tsulaia7, and
Marcelo Vogel6

1Joint Institute for Nuclear Research, Joliot-Curie 6, 141980 Dubna (Russia)
2CERN, CH-1211 Geneva 23 (Switzerland)
3Department of Physics and Astronomy, University of Sheffield, Sheffield (United Kingdom)
4IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France)
5University of Oxford, Denys Wilkinson Bldg, Keble Rd, Oxford OX1 3RH (United Kingdom)
6University of Texas at Arlington, 701 South Nedderman Drive, Arlington, TX 76019 (USA)
7Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (USA)

Abstract. The ATLAS experiment is preparing a major change in the condi-
tions data infrastructure in view of LHC Run 4. In this paper we describe the
ongoing changes in the database architecture which have been implemented for
Run 3, and describe the motivations and the on-going developments for the
deployment of a new system (called CREST for Conditions Representational
State Transfer, as a reference to REST architectures). The main goal is to set up
a parallel infrastructure for full scale testing before the end of Run 3.

1 Introduction
The processing of ATLAS [1] event data necessitates the retrieval of a collection of auxiliary
non-event data stored within database systems. This data, referred to as "conditions data,"
generally exhibits variations over time and encompasses elements such as detector alignment,
calibration, and configuration information. The complexity escalates due to the requirement
of disseminating this information across the global ATLAS computing grid, along with the
sheer multitude of concurrently operating processes on the grid. Each process demands a
distinct set of conditions to advance.

Our focus is directed towards the foundational database infrastructure, which underwent
a redesign for ATLAS in Run 3. This redesign involved the consolidation of resources within
the online Oracle cluster, coupled with the necessary developments to ensure secure access.

This reorganization resulted in an architecture resembling the one the experiment is
preparing for Run 4, known as the CREST project [2]. Here we expound upon the archi-
tecture and the current development status of this project. The first significant milestone
involves deploying a functional demonstrator by fall 2023, with the intention of testing seg-
ments of data processing workflows using real conditions data migrated from the existing
system.
∗e-mail: davide.costanzo@cern.ch
∗∗e-mail: andrea.formica@cern.ch
∗∗∗e-mail: elizabeth.gallas@cern.ch
∗∗∗∗e-mail: nurcan.ozturk@cern.ch
Copyright 2023 CERN for the benefit of the ATLAS Collaboration. CC-BY-4.0 license.



2 Conditions Database infrastructure

The infrastructure for managing and accessing condition data within ATLAS consists of the
following components:

• Database clusters: Oracle databases store the conditions data according to the LCG Condi-
tions database infrastructure [3] which includes C++ and python methods within its COOL
API for managing database content and for client read-only access. Over the years using
this infrastructure, further methods have been developed on top of the COOL API to suit
ATLAS-specific requirements.

• Database read-only copies: Database replicas kept in sync with the source utilizing Oracle
technologies which include Active Data Guard (ADG, the Oracle-provided technology for
physical replication) and Golden Gate (an Oracle solution for logical replication of selected
schemas).

• Generic database access via a middle-tier server: This is achieved through the Frontier sys-
tem [4] which mediates client data selection requests with the underlying database storage
system. Benefits of this layer include the ability to monitor requests as well as to moderate
intermittent spikes in load.

• Web Proxy: To ensure efficient access and optimal resource utilization, a series of Squid
proxies are deployed. These proxies screen the Frontier server and the database, filtering
requests from individual clients (jobs) that are accessing condition data.

2.1 Architecture before Run 3

The conditions data are organized in two different Oracle clusters, depending on their usage
(online data taking and High Level Trigger processing, or any other "offline" workflow):

1. Online Oracle cluster (named ATONR) on the ATLAS technical network, for condi-
tions data to be consumed in real time workflows.

2. Offline Oracle cluster (named ATLR) on the CERN GPN network, for conditions data
to be consumed in offline workflows, from bulk processing to reprocessing and Monte
Carlo simulation.

Conditions that are primarily stored in the online cluster are additionally replicated using
Golden Gate streaming technology to the offline cluster. Once in the offline cluster, these
conditions can be accessed in read-only mode. The figure 1 provides a simplified overview
of the ATLAS Conditions Data infrastructure prior to Run 3.

2.2 Architecture during Run 3

For Run 3 a major operation of databases consolidation has been prepared. Two main aspects
were considered in this plan:

• Oracle license model: the license model until 2023 was covering all Tier-1s Oracle nodes
used by ATLAS to keep a copy (via Golden Gate) of the conditions data. After April 2023
a new license model was adopted by CERN IT, based on a "per-core" license for Oracle
nodes.

• ATLAS was the only client inside CERN of the Oracle Golden Gate replication technology:
its usage was discouraged by CERN IT, considering the licensing costs, the additional load
on the support team, and the redundancy with the other available replication technology:
Oracle Data Guard.



Subsequently, the ATLAS Database and Metadata (ADAM) team made the decision to shift
real data conditions workflows from the offline to the online cluster in order to phase out the
need for the Golden Gate replication. The architecture that was implemented is depicted in
figure 2. A few major alterations in the architecture were required to eliminate the Oracle
Golden Gate replication (from the online cluster to the offline cluster and Tier-1s): the cen-
tralization of all real data conditions into the Oracle ATONR cluster and the establishment of
an intermediary service (called COOL-Proxy) designed to manage user requests for the stor-
age of new conditions data. In this freshly devised infrastructure, all conditions data situated
outside the online ATLAS network (ATCN) can be accessed solely through read-only (ADG)
replicas of the ATONR nodes.

Figure 1. Conditions Data system architecture before Run 3; the red arrows depict data copies using
the Oracle Golden Gate technology.

Figure 2. Conditions Data system architecture for Run 3; the COOL-proxy is accessible from CERN
General Public Network (GPN).

This novel architecture brings about the ability to optimize Oracle licensing costs.
Through the consolidation of all conditions data usage within the online cluster (ATONR),
a distinct and dedicated environment for all data processing workflows is established. This
separation prevents the mingling of conditions usage with other applications, as the ATLR
cluster supports a wide array of applications ranging from detector construction to authorship



and metadata. Additionally, this approach has led to a reduction in Oracle administration
burden and associated expenses for Tier-1s.

To ensure secure access to the ATONR cluster from the CERN GPN network, we devised
an intermediary server that acts as a custom proxy system. This system, known as COOL-
Proxy, is intended for use by experts responsible for uploading new conditions data. Notably,
the COOL-Proxy system employs the new CERN SSO authentication mechanism. Condi-
tions data experts are linked to specific e-groups, and a token mechanism is utilized to grant
them writing privileges solely within the Oracle schema corresponding to the e-group(s) to
which they belong.

On the hardware front, enhancements were made to the online cluster, involving the ad-
dition of an extra node. This improved configuration ensures extra capacity to critical online
system to process all new conditions upload workflows, while maintaining the same load on
the rest of the online environment as experienced during Run 2. Moreover, this extra node
improves the available redundancy in case of cluster node failures.

3 CREST: a Conditions Database infrastructure after Run 3

The system implemented during Run 3 closely resembles the architecture that is being tested
for the ATLAS runs commencing from Run 4. The new initiative for managing conditions
data is named CREST, originating as a progression from the CMS conditions database. It in-
herits fundamental concepts for the data model and the design of relational tables from its pre-
decessor. The development of the CREST system also benefited from discussions within the
HEP Software Foundation [5] working group on cross-experiment conditions data manage-
ment systems [6]. The intention behind CREST is to replace the existing COOL conditions
database in satisfying the conditions data requests of all offline data processing and Monte
Carlo simulations from Athena [7] jobs (Athena is the the ATLAS software framework for
event processing). This comprehensive system is composed of several integral components:

• Relational Database: Data in the CREST database is stored in relational tables utilizing a
straightforward schema. Conditions data payloads are stored within the database as Large
Objects (LOBs) and referenced through unique keys stored as related metadata in CREST.
In-depth information regarding the data model can be found in references [2] and [8].

• A REST API for the conditions data management system, accompanied by an implemented
web server and corresponding client libraries.

• A web proxy system designed to offer a caching layer, thereby diminishing the utilization
of the web server and database by clients (Athena jobs).

While the architecture closely mirrors that of Run 3, there are notable improvements (refer
to figure 3). Apart from a significant simplification in the data model, resulting in a substantial
reduction in the number of tables, the CREST system introduces a REST API for conditions
data management. This innovation entirely decouples client code from the underlying storage
implementation. Consequently, clients are no longer obligated to understand how the storage
system is internally structured.

The most significant distinction lies in the capability to maximize the utilization of the
caching layer by establishing a clear demarcation between metadata, such as the validity
intervals for each individual conditions data payload, and the conditions payload itself. This
segregation is achieved at the level of the REST API definition through access to identical
conditions data sets via a unique key.

To grasp the benefits of such a data model design, we can examine the current utilization
of database servers in both ATLAS and CMS. We assume that both experiments possess a
comparable amount of conditions data.



Figure 3. Conditions Data: comparison between present and proposed architectures.

Figure 4. Frontier/Squid usage in ATLAS and CMS.

We have extracted the volumes of data retrieved from Oracle ("Fetches") and from the
Squid system ("Total") for both the ATLAS and CMS experiments, utilizing official monitor-
ing plots. These figures are presented in table 1. Additionally, the yearly (single day average)
graph is displayed in figure 4. The considerable variability observed in the case of ATLAS
suggests a less optimal utilization of the caching system, likely stemming from the manner
in which clients request the necessary data. A more comprehensive investigation into the
underlying causes of these inefficiencies has been conducted within ATLAS, leveraging the
logging data from the Frontier servers [9].

Table 1. ATLAS and CMS Frontier/Squid monitoring.

Experiment Type Fetches (MB/s) Total (MB/s) Ratio
ATLAS Year Avg 1.5 5.1 30%
ATLAS Year Max 17 31 54%
CMS Year Avg 0.25 1.35 20%
CMS Year Max 1 5.8 17%



4 CREST architecture

The CREST system follows a multi-tier model architecture. In this arrangement, the back-
end remains a relational database that employs a concise collection of tables to oversee the
management of conditions data metadata and payloads. Simultaneously, a web server is
fashioned as the front-end. This web server actualizes a REST API, abstracting the direct
interaction with the database. A collection of client libraries has been prepared to facilitate
the utilization of the REST API from various programming languages. Notably, a C++ client
has been meticulously developed for usage from Athena clients. The existing state of the
system is elaborated upon in this section.

4.1 CREST REST API

The REST API is documented using OpenAPI specifications [10] in a YAML format. This
API essentially outlines the URL paths made accessible through the CREST server, as well
as the data objects exchanged between the server and the client (JSON is employed for data
transmitted via HTTP). Opting for a standardized set of specifications for API description
offers the advantage of being compatible with a diverse range of tools, enabling the gener-
ation of code for both server stubs and clients across various programming languages and
frameworks.

The API description encompasses a comprehensive array of metadata elements essential
for conditions data management, including tags, intervals of validity (IOVs), and global tags.
Remarkably, these metadata components exhibit high similarity between the current ATLAS
system (COOL) and the CMS data model.

4.2 CREST server

The CREST server is constructed using established Java technologies [11], specifically rely-
ing on specifications like JAX-RS and JPA, alongside the Spring Boot [12] framework.

The description of the REST API via OpenAPI facilitates the generation of server stubs
within the Jersey framework [13], employing standard generation tools [14].

The robust support and seamless interoperability within the Java ecosystem contribute to
the stability of the server code over time. This ecosystem’s flexibility allows for effortless
transitions between various sets of implementation libraries. For instance, a switch between
web servers such as Tomcat [15] and Undertow [16] can be accomplished through a simple
adjustment in the CREST server’s build file, without necessitating internal code alterations.

Utilizing JPA implementations, such as Hibernate [17], for standardized database access
provides the advantage of concise object-relational mapping syntax, while still retaining the
option for deeper optimization of specific queries.

The project’s source code (for the server and the related libraries) is hosted on GitLab at
CERN 1.

4.3 CREST client libraries and tools

Interactions with the CREST server occur through utilization of the REST API. The official
client takes the form of a C++ implementation, and it is integrated into Athena conditions
data services.

To assess the functionality of the current software for a specific subsystem, we can carry
out trials by migrating the conditions data for that given subsystem into the CREST database.

1https://gitlab.cern.ch/crest-db



To facilitate this migration from the existing COOL DB, a dedicated tool has been crafted.
This converter tool can be configured to selectively copy "tags" from COOL to CREST. This
operation involves employing the COOL API for reading and the CREST C++ client for
data insertion via the CREST server into Oracle. The tool also provides a set of logging
information, offering the added benefits of profiling and debugging the copying process.

Figure 5. CREST deployment and test infrastructure

4.4 CREST deployment and test infrastructure

To assess the functionality of the CREST system, we have employed a cloud-based deploy-
ment approach. A range of distinct CREST servers, each employing different underlying
schemes, are accessible to developers and Athena testers. This setup allows us to experiment
with various database platforms, including Oracle and Postgres, ensuring that the server code
remains well separated from the specifics of the underlying storage technology. A depiction
of this deployment scheme is presented in figure 5.

As of now, the official deployment resides in a Kubernetes [18] cluster, utilizing machines
within the CERN openstack infrastructure. This cluster also serves to deploy a caching sys-
tem that relies on Varnish. This caching system plays a crucial role in validating the architec-
ture during our initial large-scale tests.

ATLAS has laid out plans to introduce a demonstrator for CREST utilization by the con-
clusion of 2023. This demonstrator is set to undergo testing within the High-Level Trigger
(HLT) workflow. This choice stems from the fact that online workflows, such as the HLT,
impose more demanding requirements in terms of caching. Notably, conditions data like lu-
minosity and beam-spot need to be refreshed regularly, sometimes even at the granularity of
each luminosity block 2.

5 Conclusions

We have detailed the modifications made to the ATLAS conditions data management infras-
tructure in preparation for the Run 3 data acquisition phase. These adjustments are geared
towards readying both the experiment and conditions data users for an enhanced architecture
set to be employed in the upcoming data acquisition (during Run 4). Additionally, we have

2A luminosity block is defined as a period with stable luminosity (generally about one minute in duration).



elucidated the novel architecture known as the CREST project and highlighted its distinctions
from the current system. We have emphasized the core differences and enhancements that the
new architecture aims to tackle.

References

[1] ATLAS Collaboration, JINST 3, S08003 (2008), https://dx.doi.org/10.1088/
1748-0221/3/08/S08003

[2] P.J. Laycock, D. Dykstra, A. Formica, G. Govi, A. Pfeiffer, S. Roe, R. Sipos, Journal of
Physics: Conference Series 1085, 032040 (2018), https://dx.doi.org/10.1088/
1742-6596/1085/3/032040

[3] A. Valassi, R. Basset, M. Clemencic, G. Pucciani, S.A. Schmidt, M. Wache, COOL,
LCG conditions database for the LHC experiments: Development and deployment sta-
tus, in IEEE Nuclear Science Symposium Conference Record, 2008. NSS ’08 (2008),
pp. 3021–3028, https://doi.org/10.1109/NSSMIC.2008.4774995

[4] D. Dykstra, J. Phys.: Conf. Ser. 331, 042008 (2011), http://iopscience.iop.org/
1742-6596/331/4/042008

[5] HEP Software Foundation, https://hepsoftwarefoundation.org/
[6] M. Bracko, M. Clemencic, D. Dykstra, A. Formica, G. Govi, M. Jouvin, D. Lange,

P. Laycock, L. Wood, TBD (2019), https://www.osti.gov/biblio/1527431
[7] G.A. Stewart, et al., J.Phys.Conf.Ser. 762, 012024 (2016), https://iopscience.
iop.org/article/10.1088/1742-6596/762/1/012024

[8] L. Rinaldi, A. Formica, E.J. Gallas, N. Ozturk, S. Roe, EPJ Web Conf. 214, 04052
(2019), https://doi.org/10.1051/epjconf/201921404052

[9] A. Formica, N. Ozturk, M. Si Amer, J.L. Bahilo, E.J. Gallas, I. Vukotic, EPJ Web Conf.
245, 04032 (2020), https://doi.org/10.1051/epjconf/202024504032

[10] OpenAPI Initiative. (2023). OpenAPI specifications, version 3.1.0., https://www.
openapis.org

[11] Oracle corporation. (2017). Java Platform. Enterprise Edition (Java EE) Specification,
version 8, https://javaee.github.io/javaee-spec/

[12] Spring. Spring Boot (Version 2.3.0). Available from, https://spring.io/projects/
spring-boot

[13] Jersey 2 JAX-RS API (Version 2.35). Available from, https://eclipse-ee4j.
github.io/jersey

[14] OpenAPI Tools. (2020). OpenAPI Generator (Version 4.3.1). Available from, https:
//openapi-generator.tech/

[15] Apache Software Foundation. (2022). Apache Tomcat (Version 9.0.59). Available from,
https://tomcat.apache.org/

[16] JBoss Community, WildFly Project. (2019). Undertow (Version 2.2.24). Available from,
https://undertow.io/

[17] Hibernate Community. (2021). Hibernate ORM (Version 5.6.15.Final). Available from,
https://hibernate.org

[18] Cloud Native Computing Foundation. (2022). Kubernetes (Version 1.23.0). Available
from, https://kubernetes.io

https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1742-6596/1085/3/032040
https://dx.doi.org/10.1088/1742-6596/1085/3/032040
https://doi.org/10.1109/NSSMIC.2008.4774995
http://iopscience.iop.org/1742-6596/331/4/042008
http://iopscience.iop.org/1742-6596/331/4/042008
https://hepsoftwarefoundation.org/
https://www.osti.gov/biblio/1527431
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024
https://iopscience.iop.org/article/10.1088/1742-6596/762/1/012024
https://doi.org/10.1051/epjconf/201921404052
https://doi.org/10.1051/epjconf/202024504032
https://www.openapis.org
https://www.openapis.org
https://javaee.github.io/javaee-spec/
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://eclipse-ee4j.github.io/jersey
https://eclipse-ee4j.github.io/jersey
https://openapi-generator.tech/
https://openapi-generator.tech/
https://tomcat.apache.org/
https://undertow.io/
https://hibernate.org
https://kubernetes.io

	Introduction
	Conditions Database infrastructure
	Architecture before Run 3
	Architecture during Run 3

	CREST: a Conditions Database infrastructure after Run 3
	CREST architecture
	CREST REST API
	CREST server
	CREST client libraries and tools
	CREST deployment and test infrastructure

	Conclusions

