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CHALLENGE: SOLUTION:

Increased computing requirements over coming HPCs can fulfill the computing needs through
years. the era of HL-LHC (Run 4) and DUNE.

See Charles Leggett’s talk for more details.
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https://indico.jlab.org/event/459/contributions/11821/
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iiil Big Data Centre

iii. Future Big Data Centre

High-level teams of experts integrating DIGITAL SOCIETY
the Spokes working groups (mixed cross-sectional teams) & SMART CITIES
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RED-SEA: MSA network architecture

Edge servers Central Storage
/ Mc?ldulte1
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Admins
Modular Supercomputer Architecture (MSA) = High performance Ethernet as federation network featuring
. . . state-of-the-art low latency RDMA communication semantics
= aggregation of resources that are organized to facilitate . o .
the mapping of applicative workflows = BXl as the HPC fabric consisting of two discrete components
= HPC (High-Performance Computing) = a BXI NIC plus a BXI switch

= HPDA (High-Performance Data Analytics)

= the BXI fabric manager
= Al (Artificial Intelligence)
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Layer 3 Load Balancer
Rewrite UDP Packet Header

Compress, UDP Fragment,
Tag (Events/Channels)

Load Balancer
Experiment edge compute : B | Data center : .
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Parallel 1/0 with HDF5

.’ Throughput (events/sec)
. ® Serial HDF PHDF 4 ranks per node
L]
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Number of Threads/Concurrent Events

Test done in a single node
Batch size of 100 events

Throughput = (Number of Events processed)/
(Application Run time)

' For Parallel I/O:
4 parallel processes
- Threads per Rank: #Threads/4

"Total Throughput

HEP-CCE

Total throughput vs total number of threads .
64 threads per node

100,000.00
® 1 MPIRank PerNode @ 2 MPIRanks Per Node 4 MPI Ranks Per Node

75,000.00 .

50,000.00 :

25,000.00 M//. :

0.00 -~ :
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Total threads .

I/O Calls Fraction of Total I/O -

e Total Throughput: Time .

(Throughput per rank) .

X(MP| Ranks) MPI calls (external to HDF5) 14% -

e Testwith 64 threads per Write data into HDF5 file 32% .

node. .
Other (including serialization) 54%, .
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Exascale Lattice QCD Software Suite

Multi-pronged

Chroma MILC CPS HotQCD approach
Currently
focused on
: : architecture-
| specific
-
‘

programming
models for best
performance

Also exploring
OpenMP
offloading for
better
portability

(®) Brookhaven E\(\C\\)F’

National Laboratory —




Portable Parallelization Strategies (PPS)

HEP-CCE

CUDA | Kokkos | SYCL

ENERGY Science

Argonne &

NATIONAL LABORATORY

©

Brookhaven

National Laboratory

HIP OpenMP | alpaka | std::par
NVIDIA ; e
mtel/:lvm hipcc LLVM, Cray
GPU compute-cpp GCC, XL
AOMP
openSYCL .
AMD GPU intel/llvm hipce P
oneAPI CHIP-SPV: Intel OneAPI
Intel GPU intel/llvm  early prototype compiler e oneapi::dpl
| oneAPI . nvc++
x86 CPU intel/llvm V';g”,zlgsu LLVM, CCE,
computecpp GCC, XL
prototype
via Xilinx compilers protytype via
FPGA Runtime (OpenArec, Intel, SYCL
etc.)
PR, U.S. DEPARTMENT OF Office of

2= Fermilab

BERKELEY LAB

Bringing Science Solutions to the World



Portable Parallelization Strategies HEP-CCE

Ported representative testbeds from ATLAS, CMS and DUNE to each portability
layer.

Kokkos std::par

Done

Patatrack _
compiler bugs

Wirecell Done no

FastCaloSim Done Done

P2R OpenACC Done

Evaluated each porting experience according to a number of different objective
and subjective metrics.

Related talks:

e p2r [Monday 11AM] o FastCaloSim: overview [Tuesday 3PM]
e Patatrack [Thursday 12PM] o FastCaloSim: OpenMP (poster)

o FastCaloSim: alpaka + std::par (poster)
GER, U-S- DEPARTMENT OF Offi f > . =
© ENERGY 02 Argonne & () Brookhaven 2& Earmjlab

NATIONAL LABORATORY

2 BERKELEY LAB

Bringing Science Solutions to the World
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NVIDIA® OptiX™ Ray Tracing Engine -- Accessible GPU Ray Tracing

OptiX makes GPU ray tracing accessible

Flexible Ray Tracing Pipeline

e Programmable GPU-accelerated Ray-Tracing Pipeline
e Single-ray shader programming model using CUDA Green: User Programs, Grey: Fixed function/HW
e ray tracing acceleration using RT Cores (RTX GPUs)
o "  .free to use within any application..."
OptiX features

TraceRay()

e acceleration structure creation + traversal (eg BVH)
¢ 1nstanced sharing of geometry + acceleration structures

e compiler optimized for GPU ray tracing F—

Structure
https://developer.nvidia.com/rtx/ray-tracing/optix Traversal

User provides (Green):

ray generation

geometry bounding boxes
intersect functions
instance transforms

Analogous to OpenGL rasterization pipeline 2 1 oh



The computational challenge for TPCs based on liquid Argon (LArTPCs):

Test Detector Geometry:

Liquid Argon: xy z: 1 x 1 x 2 m (blue)

5 photo detectors (red)

photon yield (no E-field): 50000 y/MeV

single 2 GeV electron (shower not fully

contained)

(low Z=18, low p=1.78 g/cm3).

» ~T7x107 VUV scintillation photons are
produced/event.

» Using Geant4 (11.1.p01) to simulate
photon generation and propagation o
using a single core on an Intel® Core
i9-10900k@ 3.7Ghz takes :

~ 10 minutes/event
(Compared to 0.034 seconds/event
without optical photon simulation) -
LArTPC-Experiments use look up tables
and parameterizations instead of full
simulation for photon response.

Shown are only steps and particle tracks handled by Geant4,
no optical photons.

Hans Wenzel Integration of Geant4 and Opticks / CHEP 2023

2% Fermilab

May 8 to 12, 2023



New Simulation Chain

Leading Edge Muon is most
likely to propagate all the way

to the detector

sF 1l

CORSIKA Server

« CORSIKA was modified to run as a server which can be configured with individual primaries (thanks to D. Baack)

Generates Primary Particles

CORSIKA Server

Propagate Air Showexs

I3Primarylnjector

IBMCTree

S

« Different CORSIKA cards for different showers

« The energy needed to reach the detector is highly dependent on the inclination of the shower

PROPOSAL

Propagatp Muons

Manages Work Queue

OpenCL

Propagate Photons

Detector Simulation

ISMCPE

—

Detector Response

« The energy at which CORSIKA will stop propagating particles is now higher for inclined showers

 Showers with higher energy leading edge muons are undersampled:

«  Showers with low energy muons are killed before the rest of the shower is calculated

 Since individual particles are sent over IPC no files are written avoiding 10 bottleneck

2 ICECUBE

NEUTRINO OBSERVATORY

More inclined showers
encounter more matter between
the surface and the detector
and require higher energy
muons to reach the detector

10° E

104':

Muon Energy [ GeV ]

103

0° 15° 36° 4é°
Zenith Angle [deg]
New CORSIKA Server will set
the minimum muon energy
higher for more inclined
showers

60° 75° 90°

- 1000

800

600

400

200

Kevin Meagher - Parallelization of Air Shower Simulation with lceCube - 12



Celeritas version 0.3-dev: Geant4 integration status

- Imports EM physics selection, cross sections, parameters
- Converts geometry to VecGeom model

- Offloads EM tracks from Geant4

- Scores hits to user “sensitive detectors”

* Includes GPU-optimized simple calorimeter

- Integrates with Geant4 10.6-11.0

- Supports physics/geometry/setup changes at link/run time

Celeritas is not designed to be a prototype code

¥ OAK RIDGE
National Laboratory




OLD MADEVENT

~
~
~
~
~
S
~.

-.:-.-.-.3 \\\\\\\ .
FORTRAN: .
RANMAR First we developed
| the new ME engines
FORTRAN: . . .
MADEVENT in standalone applications

MOMENTA

FORTRAN:
MATRIX1

1. STANDALONE
(TOY APPLICATIONS)
MULTI-EVENT API

MATRIX ELEMENTS

W

MATRIX ELEMENT:
CPU BOTTLENECK
IN OLD MADEVENT

MOMENTA

MATRIX ELEMENTS

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release

all-Fortran MadEvent
into a multi-event framework
and we injected the new MEs into it

2. NEW MADEVENT

GOAL: LHC PROD
MULTI-EVENT API

FORTRAN: (Amdahl...)
SCALAR:
B NEW
FORTRAN: BOTTLENECK?
MADEVENT
| PARALLEL:
MUCH FASTER!

CERN UCL /;
S. Hageboeck — CHEP, Norfolk, VA, 08 May 2023 Argonne & (‘\jé e )

AAAAAAAAAAAAAAAAAA



Reweighing

« If new physics doesn't affect later
simulation stages:
Only need to regenerate events
(Note: Very hard condition)

« — Can recycle simulations
(Note: Must simulate orig. evt.)

o Furthermore: Event generation
factorises, too

@\ Zenny Wettersten (CERN)
/) Y

MC MATRIX
PSEUDO RANDOM ELEMENT
NUMBERS GENERATOR
W (e.g. MG5aMC)
PHASE SPACE
SAMPLING
PHASE SPACE
SAMPLING WEIGHTED EVENTS
OPTIMISATION (EVT_i, W_i}
4 HHHW
%, MONTE CARLO MONTE CARLO

INTEGRATION UNWEIGHTING

v g
CROSS-SECTIONS etc... = UNWEIGHTED EVENTS
(AVG W_i, MAX W_i) {EVT_i, W_i=1}

Acceleration beyond LO event generation



mailto:zenny.wettersten@cern.ch

Imperial College
London

Monte Carlo simulations

ATLAS Preliminary. 2028 CPU resource needs
MC fast calo sim + fast reco, generators speed up x2

MC-Full(Sim)

Data Proc

Figure 2: Breakdown of es-

Analysis

timated compute workloads
in 2028 for ATLAS

MC-Full (Rec)

HI
MC-Fast (Sim)

MC-Fast (Rec) Over 50% is required by Monte Carlo related workloads

EvGen

https://doi.org/10.22323/1.390.0009 ’



GPUs at the High Level Trigger >

CMS has leveraged GPUs for the online reconstruction at High Level Trigger (HLT) starting from the
beginning of Run-3 (2022-today)

What has been offloaded to GPU :

® ~25% of online reconstruction:
o  Pixel track reconstruction ECAL & HCAL local reconstruction

CMS Preliminary B - 13.6 TeV CMS Preliminary ) ‘ 13.6 TeV

CPU only CPU + GPU
HCAL local
reconstruction
690.1ms 397.8ms
ECAL local !
reconstruction = A 4 " Pixel track
/\ pets reconstruction
Pixel track \¥/,,,» \ »
r::zns:?'flction N \\\\, //// v D % ‘ ) " ECAL local
™ T ‘ Whgl\ reconstruction
. . s i - HCAL local
*Source CERN-CMS-DP-2023-004 CHEP2023 - Running GPU enabled C(MSSW workflows through the production system - Charis Kleio Koraka - Tuesday May 9™ 2023 reconstruction 6



https://cds.cern.ch/record/2851656

Workflow management

Submitters

( )

Global
Workqueue

]._

1 Y

A

—

Pool of WMAgents

RegMgr2 ]4

———— External flow

—— > WMAgent flow
—» WMCore flow

WMAgent

@ CMS

WMAgent

GlideinWMS/
Global Pool

N

Worker
nodes

CHEP2023 - Running GPU enabled CMSSW workflows through the production system - Charis Kleio Koraka - Tuesday May 9 2023 10




So what 'stuff’ can we throw away?

» The problem is no longer one of rejecting (trivial) background
» Fundamentally changes what it means to trigger

Congatvlations,
it only took you
65299 seconds

W jolyen.co.uk

> Instead, we need to categorise different 'signals’
P> Requires access to as much of the event as possible, as early as possible
> Solution: Drop the LO trigger, reconstruct 30 MHz of events before making trigger

decisions!

The University of Manchester

LHCb GPU

Introduction

Upgrade 1

Why GPUs

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023




LHCb & Supercomputers
00080

DIRAC Workload Management System & Supercomputers?

10



HEP-CCE

Fast Calorimeter Simulation for GPU Portability Studies

ATLAS needs lots of simulation CalghmEtCrdominatee
e Simulation for background modeling is paramount
for precision physics
e Lack of MC-based statistics limited results in Run-2
o will be worse for Run-3 and beyond

A very large fraction of the simulation's computational

budget is spent in the LAr Calorimeter

e Parametrized simulation is enormously faster than
full Geant4 simulation (complex detector geometry) e

T I T 1§ T T T T .I .l T | T T
S0~ ATLAS re||m|nary ]
I 2022 Computing Model - CPU

40

[ e Conservative R&D
- v Aggressive R&D

FastCaloSim is small, self-contained, has few

dependencies, and already has a CUDA port

e Offloading simulation to GPUs can help stay within
ATLAS's compute budget

e 3 "kernels": workspace reset, simulate, reduce plus
small data transfers from device to host

e Code organized to share maximum functionality
between all implementations Year

@ ENERGY sccre Argonne & (@) Broskhaver & Fermilab

NATIONAL LABORATORY

I — Sustained budget model P -
30 — (+10% +20% capacity/year) ',’ —

20

Annual CPU Consumption [MHS06years]

10F
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02020 2022 2024 2026 2028 2030 2032 2034 2036

BERKELEY LAB
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CGonclusions and outlook

e LHCb has high demands of throughput of reconstruction
and selection on GPUs to cope with high signal rates

e Machine learning ideal to reduce rates
while keeping signal efficiencies high

e Introducing flexible loading of ML models at the
first trigger level (running on GPUs) with TensorRT

o  Multiple copies of typical sized MLPs seems tO/_ﬁ

effect throughput in an acceptable way
e Promising avenue of having flexible ML reconstruction
and selection at the first trigger level!

Test MLP running with TensorRT

90 A
I~
T
3
< 70 Default (2 hidden layers)
%’ 32-bit FP precision
= —e— 1 instances
= 6o 4 —¥— 2 instances
z —&— 3 instances
—8— 4 instances
. . —&— 5 instances
50 A LHCb simulation b )
——=- baseline

2 4 6 8 10 12 14 16
maximum batch size of TensorRT [103]

12



Architecture

ﬁ:‘E? Unchanged

follower

Unchanged

eos shell

IO Server

' 5/9/2023




Cost effectiveness

primary
cosmic ray

Average number of simulations/S

4\
"' hadrons

N ARM about
20% more
(N~ GeV muons

e e adsendads I oss elfective

t2a-standard-4

J that the closest x86

c2d-standard-4

—— 1450 m

H c2-standard-4

- 2450 m

ARM CPUs more cost-effective than x86 CPUs (at least in early 2022)

CHEP 23



Kserve extension implementation

The main components that we developed are:

e Custom WebUI to hide complexity to the user
o A Kubeflow managed solution exists, we are

planning to integrate this work eventually

m  We need additional metadata to be passed
(e.g. board model, provider, hls engine etc)

e Translate a model load request into
conditional actions

o Load the bitstream file from the remote location

directly
m  Pre built by the user on its own

o  building a firmware “seamlessly” on an external

building machine

e Eventually load the firmware on the FPGA
board via the development of a grpc server
installed on the machine that have access to

the board

D.Ciangottini - ciangottini@infn.it - CHEP2023

§
B=RBEREIO
Moolel Brmware

AN\

\\;

reaoly

|'%| Build Somuare

Auto-build
server

Load inference Firmware
from an S bucket

We tested workflows for both small and ML
board (ebaz4205, zedboard, alveo u50)
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e Within CMS software (CMSSW), the laaS deployment scheme is called
“Services for Optimized Network Inference on Coprocessors” (SONIC)

_______________________________________________________ gRPC connection e e e e e e e e e C T T e e C PR ETETTEPETEEPEPETLER
; ; : Al Inference Cluster Triton
: 4 . .
oMssw (T ) crey O (CPUIGPU/IPUIFPGA/etc) Server i
: Client JE >: (Local/Remote) :
> \ Send inputs : ] :
ien .
N oroduce() l Balancer
° :  Receive outputs : H

[ Client CPU .
Repository

P. McCormack (MIT) - CHEP 2023 6



(@)

O
O
O

Cluster residual .
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Physics performance
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x cluster - x MC hit [mm)]

Track type

Quantity CPU clusters [%] FPGA clusters [%]

All VELO tracks

efficiency  98.254 + 0.007
clone

1.231 £+ 0.006

98.254 £ 0.007
1.234 4+ 0.006

Long tracks

ici 99.252 4+ 0.006
s 0.806 £ 0.006

clone

99.252 £ 0.006
0.806 £ 0.006

ghost

0.848 £ 0.003

0.928 £ 0.003

=
o

Giovanni Bassi

i i rformance is
GA algorithm tracking pe N
) :::arly ir?distinguishable from CPU/GPU clustering

Ul

T[T I T[T T[T TTTT

(=}

FPGA-based real-time cluster finding

T

LHCb simulation
—e— CPU: 11.43+12.26/pT
—&— FPGA: 11.37+12.28/p_

10.1109/TNS.2023.3273600
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https://doi.org/10.1109/TNS.2023.3273600

‘i)

APEIRON in Trigger and Data Acquistion Systems m

Abstract Processing Environment for Intelligent Read-Out systems based on Neural networks

* Input data from several different channels (data sources,
detectors/sub-detectors).

* Data streams from different channels recombined
through the processing layers using a low-latency,
modular and scalable network infrastructure

Y Dt Y ot Y D « Distributed online processing on heterogeneous
— R —— computing devices (FPGAs for the moment) in n
Proc Layer 0 subsequent layers.
‘ T } ‘ * Typically features extraction will occur in the first NN
Host Network Adapter Host Network Adapter Iayers On RO FPGAS-
Host Network Adapter

* More resource-demanding NN layers can
be implemented in subsequent processing layers.

Proc Layer 1

}410M3a| |[eINBN pJemiod paod

* Classification produced by the NN in last processing layer
i (e.g. pid) will be input for the trigger processor/storage
Proc Layer n-1 ’ online data reduction stage for triggerless systems.

04/05/23 CHEP 2023 3
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Overview of Quantum Algorithms for NHEP

“Low-Level” Algorithms

» Grover’s & Shor’s algorithms
» Provable speedup / error correction required

Quantum Simulation

» Mimic system using simplified model =
» Classically likely intractable

Unorthodox Approaches

Energy

» Quantum annealing, adiabatic quantum computing
» (Gaussian) Boson sampling, etc.

NISQ Algorithms

» Variational algorithms: Hybrid quantum-classical
» Less resources / potential speedups

cz Ccz

i -

0 {———ag Gy
‘m?)xAAg
®
R B - -
@ B B N
R, H - ~H-  -H

L
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Overview of Quantum HW (high level)
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= Strong coupling to hardware properties

// prepare Bell state

OPENQASM 2.0;

|0> , ’7 include "gelibl.inc";
@ qreg ql2];
2];
0) —e{ A+ g

reset q[1];

h q[o];
cx qle], qll];
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Results Noisy Simulation
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* Noise-free Simulation:
* Validation Accuracy: 0.857 (Step 11) 0.7
* Validation Loss: 0.155 (Step 11)
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* Noisy Simulation:
* Device: IBM Perth e
* Validation Accuracy: 0.854 (Step 11) 5
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5. Inference

Average Calorimeter shower shape k-means Clusters
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Test Accuracy B Ciassical ViT

How Did We Do? - I QVIT With 1 Encoding

B QViT With m Encoding And No Rescaling
I QViT With I Encoding
B QViT With £ Encoding And No Rescaling
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0.90 Rescaling: rescaling the Q, K, V portions to classical
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Results with real data ATL o é@ ICEPP

EXPERIMENT ve The University of Tokyo

* We applied this algorithm to real ATLAS data taken by non-physics random triggers.

* The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if
reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks.

* The annealing time was compared with MC sample(10 pions/event with pile-up 20).
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e Qur algorithm also works successfully with real ATLAS data.
* |tis a good starting point to further explore the method.

Track P, [GeV]
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Tagging Efficiency
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Quantum Support Vector Machines: Results
® We construct boosted ensembles of 200 QSVMs.

® Due to simulation constraints, the CV models only include the inital displacement.

Qubit Based, d = 52 CV,i=1
—— Nyrain = 10000 —— Nyrain = 10000
Ntrain = 20000 Nitrain = 20000
—0— Ntrain = 30000 —8— Nyrain = 30000
—0— Nirain = 40000 —0— Nrain = 40000
—0— Nyrain = 50000 —0— Nyirain = 50000
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AdaBoost Generation

AdaBoost Generation



Higgs classification e e

Quantum Support Vector Machine for the ttH(bb)
event classificationl®!
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—— QSVM (6 qubits): AUC = 0.676 = 0.017
SVM linear: AUC = 0.672 + 0.017
Random Classifier

0.4 0.6
Background Efficiency (FPR)

09.05.23 [1] V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EP) Web Conf
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Weightings in data:
3 particles : 20%
4 particles : 14%
5 particles : 18%

6 particles : 12%

Weighted Averages:

Permutation Invariant = 0.77
Non-invariant = 0.67
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Qibo framework
Qibo
[ [](j\‘ [ Qibocal J
QPU ( Gotosetabetracton ) | calibration routines | =)

- Gate set
haracterization
gqqg-live l

( Control drivers ] [ Reporting tools J [ qg-compare ]

( Pulse abstraction ] [ gg-upload l




HEPCloud-Rigetti Pre-Production (Aug ’22)
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