
HEP-CCEComputing Resources for Future HEP Experiments
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CHALLENGE:
Increased computing requirements over coming 
years.

SOLUTION:
HPCs can fulfill the computing needs through 
the era of HL-LHC (Run 4) and DUNE.

2

See Charles Leggett’s talk for more details.

https://indico.jlab.org/event/459/contributions/11821/


ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

L’ICSC includes
10 thematic spokes 
1 infrastructure spoke
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ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

High-level teams of experts integrating 

the Spokes working groups (mixed cross-sectional teams)

SUPERCOMPUTING CLOUD INFRASTRUCTURE0



ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

The Bologna Big Data Technopole

Bologna

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing



RED-SEA: MSA network architecture

Modular Supercomputer Architecture (MSA)

¡ aggregation of resources that are organized to facilitate 
the mapping of applicative workflows
¡ HPC (High-Performance Computing)
¡ HPDA (High-Performance Data Analytics)
¡ AI (Artificial Intelligence)

¡ High performance Ethernet as federation network featuring 
state-of-the-art low latency RDMA communication semantics

¡ BXI as the HPC fabric consisting of two discrete components

¡ a BXI NIC plus a BXI switch

¡ the BXI fabric manager
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GatewayGateway
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Layer 3 Load Balancer

15

Host1

HostN

Load Balancer

μSec

Rewrite UDP Packet Header

Decompress, 
Reassemble, 
Process

Dynamically
Load 
Balance

Edge Target

Uncoupled
LAN,IT, ...

Compress, UDP Fragment, 
Tag (Events/Channels)



HEP-CCEParallel I/O with HDF5

10

Test done in a  single node
Batch size of 100 events

Throughput = (Number of Events processed)/
(Application Run time)

For Parallel I/O: 
4 parallel processes
Threads per Rank: #Threads/4

● Total Throughput:
 (Throughput  per rank)  
X(MPI Ranks)

● Test with 64 threads per 
node.

I/O Calls Fraction of Total I/O 
Time

MPI calls (external to HDF5) 14%

Write data into HDF5 file 32%

Other (including serialization) 54%



Exascale Lattice QCD Software Suite

AMD 
GPU

Intel 
GPU 

NVIDIA 
GPU

Target

Multi-pronged 
approach

Currently 
focused on  
architecture-
specific 
programming 
models for best 
performance

Also exploring 
OpenMP 
offloading for 
better 
portability 

Chroma MILC CPS HotQCDApplications

QUDA GridLibraries

CUDA SYCL/DPC++HIP OpenMP
Programming 
Model



HEP-CCE

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA 
GPU

intel/llvm
compute-cpp hipcc

nvc++
LLVM, Cray 

GCC, XL
nvc++

AMD GPU openSYCL
intel/llvm hipcc

AOMP
LLVM
Cray

Intel GPU oneAPI
intel/llvm

CHIP-SPV: 
early prototype

Intel OneAPI 
compiler prototype oneapi::dpl

x86 CPU
oneAPI

intel/llvm
computecpp

via HIP-CPU 
Runtime

nvc++
LLVM, CCE, 

GCC, XL

FPGA via Xilinx 
Runtime

prototype
compilers 

(OpenArc, Intel, 
etc.) 

protytype via
 SYCL

3

Portable Parallelization Strategies (PPS)



HEP-CCEPortable Parallelization Strategies
Ported representative testbeds from ATLAS, CMS and DUNE to each portability 
layer.

Evaluated each porting experience according to a number of different objective 
and subjective metrics. 

Related talks:
● p2r [Monday 11AM]
● Patatrack [Thursday 12PM] 

4

Kokkos SYCL OpenMP Alpaka std::par

Patatrack Done Done* WIP Done* Done 
compiler bugs

Wirecell Done Done Done no Done

FastCaloSim Done Done Done Done Done

P2R done Done OpenACC Done Done

● FastCaloSim: overview [Tuesday 3PM]
● FastCaloSim: OpenMP (poster)
● FastCaloSim: alpaka + std::par (poster)

https://indico.jlab.org/event/459/contributions/11844/
https://indico.jlab.org/event/459/contributions/11824/
https://indico.jlab.org/event/459/contributions/11809/
https://indico.jlab.org/event/459/contributions/11848/
https://indico.jlab.org/event/459/contributions/11853/




The computational challenge for TPCs based on liquid Argon (LArTPCs):
Test Detector Geometry: 
Liquid Argon: x y z: 1 x 1 x 2 m (blue) 
5 photo detectors (red)
photon yield (no E-field): 50000 g/MeV 
single 2 GeV electron (shower not fully 
contained)
(low Z=18,  low  r = 1.78 g/cm3).
Ø ~ 7x107 VUV scintillation photons are 

produced/event. 
Ø Using Geant4 (11.1.p01) to simulate 

photon generation and propagation o 
using a single core on an Intel® Core
i9-10900k@ 3.7Ghz takes :

~ 10 minutes/event
(Compared to 0.034 seconds/event 
without optical photon simulation) à
LArTPC-Experiments use look up tables 
and parameterizations instead of full 
simulation for photon response.

Shown are only steps and particle tracks handled by Geant4,
no optical photons.

2 GeV e
-

Photodetectors

Hans Wenzel    Integration of Geant4 and Opticks / CHEP 2023 May 8 to 12, 2023 3



Kevin Meagher - Parallelization of Air Shower Simulation with IceCube -

I3MCTree

OpenCL CORSIKA Server

Detector Simulation

I3MCPE

GPU

Generates Primary Particles Detector Response

Propagate Air Showers

I3MCTree

Propagate Muons 

PROPOSAL

Propagate Photons

I3PrimaryInjector Propagation Client

Manages Work Queue

New Simulation Chain

CORSIKA Server

• CORSIKA was modified to run as a server which can be configured with individual primaries  (thanks to D. Baack)

• Different CORSIKA cards for different showers


• The energy needed to reach the detector is highly dependent on the inclination of the shower

• The energy at which CORSIKA will stop propagating particles is now higher for inclined showers


• Showers with higher energy leading edge muons are undersampled: 

• Showers with low energy muons are killed before the rest of the shower is calculated


• Since individual particles are sent over IPC no files are written avoiding IO bottleneck

12

Leading Edge Muon is most 
likely to propagate all the way 

to the detector

More inclined showers 
encounter more matter between 

the surface and the detector 
and require higher energy 

muons to reach the detector

New CORSIKA Server will set 
the minimum muon energy 

higher for more inclined 
showers



Celeritas version 0.3-dev: Geant4 integration status

• Imports EM physics selection, cross sections, parameters

• Converts geometry to VecGeom model

• Offloads EM tracks from Geant4

• Scores hits to user “sensitive detectors”

• Includes GPU-optimized simple calorimeter

• Integrates with Geant4 10.6–11.0

• Supports physics/geometry/setup changes at link/run time

9

Celeritas is not designed to be a prototype code



Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 8

MG5aMC: old and new architecture designs

1. STANDALONE
(TOY APPLICATIONS)

MULTI-EVENT API

2. NEW MADEVENT
(GOAL: LHC PROD)
MULTI-EVENT API

OLD MADEVENT
(CURRENT: LHC PROD)

SINGLE-EVENT API

First we developed 
the new ME engines 

in standalone applications

(Amdahl...)

SCALAR:
NEW 

BOTTLENECK?

PARALLEL:
MUCH FASTER!

MATRIX ELEMENT: 
CPU BOTTLENECK 
IN OLD MADEVENT

MATRIX ELEMENTS

CUDA/C++ or PFs:
cuRAND

CUDA/C++ or PFs:
RAMBO

CUDA/C++ or PFs:
MEKERNELS

MOMENTA

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

CUDA/C++ or PFs:
MEKERNELS

MOMENTA

MATRIX ELEMENTS

Then we modified the existing 
all-Fortran MadEvent 

into a multi-event framework 
and we injected the new MEs into it



Reweighing

• If new physics doesn’t a↵ect later
simulation stages:
Only need to regenerate events
(Note: Very hard condition)

• ! Can recycle simulations
(Note: Must simulate orig. evt.)

• Furthermore: Event generation
factorises, too

Zenny Wettersten (CERN) May 8, 2023 Acceleration beyond LO event generation 5

mailto:zenny.wettersten@cern.ch


Monte Carlo simulations

2https://doi.org/10.22323/1.390.0009

Over 50% is required by Monte Carlo related workloads



CHEP2023 - Running GPU enabled CMSSW workflows through the production system - Charis Kleio Koraka - Tuesday May 9th 2023

GPUs at the High Level Trigger

6

CMS has leveraged GPUs for the online reconstruction at High Level Trigger (HLT) starting from the 
beginning of Run-3 (2022-today)

What has been offloaded to GPU :

● ~25% of online reconstruction:
○  Pixel track reconstruction ECAL & HCAL local reconstruction

HCAL local 
reconstruction

ECAL local 
reconstruction

Pixel track 
reconstruction 

CPU only CPU + GPU

HCAL local 
reconstruction

ECAL local 
reconstruction

Pixel track 
reconstruction 

*Source CERN-CMS-DP-2023-004

https://cds.cern.ch/record/2851656


CHEP2023 - Running GPU enabled CMSSW workflows through the production system - Charis Kleio Koraka - Tuesday May 9th 2023

Submitters

McM

ReReco

RelVal

ReqMgr2ReqMgr2ReqMgr2

Pool of WMAgents

WMAgent
HTCondor

GlideinWMS/
Global Pool

Worker 
nodes

WMAgent
HTCondor
WMAgent
HTCondor

WMAgent
HTCondor
WMAgent
HTCondor
WMAgent
HTCondor

External flow
WMAgent flow

Global 
Workqueue

WMCore flow

Unified

Workflow management

10



LHCb GPU

Introduction

The LHCb detector

Upgrade 1

Why GPUs

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

So what ’stu↵’ can we throw away?
I The problem is no longer one of rejecting (trivial) background
I Fundamentally changes what it means to trigger

I Instead, we need to categorise di↵erent ’signals’
I Requires access to as much of the event as possible, as early as possible
I Solution: Drop the L0 trigger, reconstruct 30 MHz of events before making trigger

decisions!
5 / 13



LHCb offline activities: computing resource requirements LHCb & Supercomputers Technical solutions Results Conclusion Backup

DIRAC Workload Management System & Supercomputers?

Computing
Element

DIRAC

 Services
Pilot-Factory

 Waiting
Jobs

Supercomputer
LRMS

Queues

Internet

CVMFS

Accelerators
(GPUs, FPGAs)

X86/nonX86 CPUs

Many-core
architecture
Fast-Node

interconnectivity

?

?
?
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HEP-CCEFast Calorimeter Simulation for GPU Portability Studies
ATLAS needs lots of simulation
● Simulation for background modeling is paramount 

for precision physics
● Lack of MC-based statistics limited results in Run-2

○ will be worse for Run-3 and beyond

A very large fraction of the simulation's computational 
budget is spent in the LAr Calorimeter
● Parametrized simulation is enormously faster than 

full Geant4 simulation (complex detector geometry)

FastCaloSim is small, self-contained, has few 
dependencies, and already has a CUDA port
● Offloading simulation to GPUs can help stay within 

ATLAS's compute budget
● 3 "kernels": workspace reset, simulate, reduce plus

small data transfers from device to host
● Code organized to share maximum functionality 

between all implementations

2



Conclusions and outlook
● LHCb has high demands of throughput of reconstruction 

and selection on GPUs to cope with high signal rates
● Machine learning ideal to reduce rates 

while keeping signal efficiencies high

● Introducing flexible loading of ML models at the 
first trigger level (running on GPUs) with TensorRT
○ Multiple copies of typical sized MLPs seems to 

effect throughput in an acceptable way
● Promising avenue of having flexible ML reconstruction 

and selection at the first trigger level!

12



Architecture

5/9/2023 9

CSSFST

CSSFST

CSSFST

Unchanged Unchanged

IO Server



Cost effectiveness

ARM CPUs more cost-effective than x86 CPUs

ARM

CHEP 23

(at least in early 2022)

ARM about

20% more
cost effective
that the closest x86



D.Ciangottini - ciangottini@infn.it - CHEP2023

Kserve extension implementation

The main components that we developed are:

● Custom WebUI to hide complexity to the user
○ A Kubeflow managed solution exists, we are 

planning to integrate this work eventually
■ We need additional metadata to be passed 

(e.g. board model, provider, hls engine etc)
● Translate a model load request into 

conditional actions
○ Load the bitstream file from the remote location 

directly
■ Pre built by the user on its own

○ building a firmware “seamlessly” on an external 
building machine

● Eventually load the firmware on the FPGA 
board via the development of a grpc server 
installed on the machine that have access to 
the board

8

We tested workflows for both small and ML 
board (ebaz4205, zedboard, alveo u50)

mailto:ciangottini@infn.it


• Within CMS software (CMSSW), the IaaS deployment scheme is called 
“Services for Optimized Network Inference on Coprocessors” (SONIC)

P. McCormack (MIT) - CHEP 2023 6

SONIC



Physics performance

10

● Moving from a full-fledged software implementation of the 
VELO clustering to a FPGA-based one required a careful 
evaluation of possible impacts on physics performances 
in terms of
○ Cluster efficiency ➝ find hit on detector
○ Cluster residual    ➝ match hit position
○ Track efficiency    ➝ find track
○ Track resolution   ➝ match track parameters

● FPGA algorithm tracking performance is 
nearly indistinguishable from CPU/GPU clustering

Giovanni Bassi FPGA-based real-time cluster finding

10.1109/TNS.2023.3273600

https://doi.org/10.1109/TNS.2023.3273600


04/05/23 CHEP 2023 3

APEIRON in Trigger and Data Acquistion Systems
Abstract Processing Environment for Intelligent Read-Out systems based on Neural networks

• Input data from several different channels (data sources, 
detectors/sub-detectors).

• Data streams from different channels recombined 
through the processing layers using a low-latency, 
modular and scalable network infrastructure

• Distributed online processing on heterogeneous 
computing devices (FPGAs for the moment) in n
subsequent layers.

• Typically features extraction will occur in the first NN 
layers on RO FPGAs.

• More resource-demanding NN layers can 
be implemented in subsequent processing layers.

• Classification produced by the NN in last processing layer 
(e.g. pid) will be input for the trigger processor/storage 
online data reduction stage for triggerless systems.



“Low-Level” Algorithms
I Grover’s & Shor’s algorithms
I Provable speedup / error correction required

Quantum Simulation
I Mimic system using simplified model
I Classically likely intractable

Unorthodox Approaches
I Quantum annealing, adiabatic quantum computing
I (Gaussian) Boson sampling, etc.

NISQ Algorithms
I Variational algorithms: Hybrid quantum-classical
I Less resources / potential speedups

3141
91 =

?⇥?

Franz/Zurita/Diefenthaler/Mauerer Quantum Co-Design in NHEP May 9, 2023 2 / 9

Overview of Quantum Algorithms for NHEP



Transmon Ion Traps Neutral Atoms

) Strong coupling to hardware properties

|0i
|0i

H ,

// prepare Bell state

OPENQASM 2.0;
include "qelib1.inc";

qreg q[2];
creg c[2];
reset q[0];
reset q[1];
h q[0];
cx q[0], q[1];

Franz/Zurita/Diefenthaler/Mauerer Quantum Co-Design in NHEP May 9, 2023 3 / 9

Overview of Quantum HW (high level)



CHEP'23 - Improving Noisy Hybrid Quantum Graph Neural Networks for Particle Decay Tree Reconstruction14

Results Noisy Simulation

● Noise-free Simulation:
● Validation Accuracy: 0.857 (Step 11)
● Validation Loss: 0.155 (Step 11)

● Noisy Simulation:
● Device: IBM Perth
● Validation Accuracy: 0.854 (Step 11)
● Validation Loss: 0.154 (Step 11)



Precise Quantum Angle Generator Designed for Noisy Quantum Devices.

Valle Varo 
valle.varo@desy.de

Average Calorimeter shower shape

Energy Sum Pixel-wise correlation

k-means Clusters

6

5. Inference

1. Use Case


2. QAG Model


3. Architecture


4. Training


5. Inference 

6. Quantum Noise 

Study


6.1. Inference


6.2. Training


7. Conclusions

mailto:valle.varo@desy.de


How Did We Do?

21

Training Loss Test Loss

Test Accuracy

Encoding: scaling the inputs to map between 土 value
Rescaling: rescaling the Q, K, V portions to classical 
shape/dimensions
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Results with real data

TRACK FINDING BY GPU-BASED ANNEALING MACHINE

• We applied this algorithm to real ATLAS data taken by non-physics random triggers.
• The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if 

reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks. 

• The annealing time was compared with MC sample(10 pions/event with pile-up 20).

• Our algorithm also works successfully with real ATLAS data. 

• It is a good starting point to further explore the method.

Average pre-processing 

time for data is ~0.6 sec.

(single core, 

11th Gen Intel(R) 

Core(TM) i9-11900K 

@ 3.50GHz)



Quantum Support Vector Machines: Results

• We construct boosted ensembles of 200 QSVMs.

• Due to simulation constraints, the CV models only include the inital displacement.
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Higgs classification

7

Quantum Support Vector Machine for the ttH(bb) 
event classification[5]

[1] V Belis et al, (2021), Higgs Analysis with Quantum Classifiers, EPJ Web Conf09.05.23



B Meson Continuum Suppression

15

Weightings in data:

3 particles : 20%

4 particles : 14%

5 particles : 18%

6 particles : 12%

Weighted Averages:

Permutation Invariant = 0.77
Non-invariant = 0.67





HEPCloud-Rigetti Pre-Production (Aug ’22)

05/09/236

Rigetti QPU

Virtual 
Machine 
running 

HTCondor

AWS
Direct 

Connect 
To Rigetti

AWS
Load 

Balancer

Fermilab
HEPCloud

Condor Master

Fermilab 
HEPCloud

Access Point
Fermi AWS Domain Rigetti  AWS Domain

On Site at 
Fermilab

Input/Output 
Data Pathways

Rigetti

HEPCloud
Decision Engine

Rigetti QCS 
API

Query Channel for Accounting 
and Reservations (optional)

HEPCloud
GlideinWMS

Factory 

AWS Provisioning, 
authentication/ 
credentials pathway, 
On-Demand instances 
setup

Peering

Fermi Hosted Services


