Computing Resources for Future HEP Experiments

CHALLENGE: Increased computing requirements over coming years.

See Charles Leggett's <u>talk</u> for more details.

SOLUTION:

HPCs can fulfill the computing needs through the era of HL-LHC (Run 4) and DUNE.

HEP-CCE

SUPERCOMPUTING CLOUD INFRASTRUCTURE **FUNDAMENTAL** RESEARCH **FUTURE HPC & BIG DATA & SPACE ECONOMY** IMPRENDITORIALITÀ, VZE, POLICY, OUTREACH 3 4 **ASTROPHYSICS &** COSMOS EARTH & CLIMATE **OBSERVATIONS** ISTRUZIONE E FORMAZIONE, IMP RASFERIMENTO DI CONOSCENZE, ÖÖ 5 6 **MULTISCALE MODELING ENVIRONMENT & ENGINEERING & NATURAL DISASTERS APPLICATIONS** 8 **Garr Network IN-SILICO** HPC Centre **MATERIALS &** MEDICINE **Future HPC Centre MOLECULAR SCIENCES** & OMICS DATA **Big Data Centre** 10 Future Big Data Centre 9 High-level teams of experts integrating QUANTUM **DIGITAL SOCIETY** the Spokes working groups (mixed cross-sectional teams) COMPUTING **& SMART CITIES**

L'ICSC includes 10 thematic spokes 1 infrastructure spoke

The Bologna Big Data Technopole

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 - Istruzione e Ricerca

- Modular Supercomputer Architecture (MSA)
- aggregation of resources that are organized to facilitate the mapping of applicative workflows
 - HPC (High-Performance Computing)
 - HPDA (High-Performance Data Analytics)
 - AI (Artificial Intelligence)

- High performance Ethernet as federation network featuring state-of-the-art low latency RDMA communication semantics
- BXI as the HPC fabric consisting of two discrete components
 - a BXI NIC plus a BXI switch
 - the BXI fabric manager

Layer 3 Load Balancer

Parallel I/O with HDF5

Argon

Brookhaven[®] 🛟 Fermilab

Exascale Lattice QCD Software Suite

Multi-pronged approach Currently focused on architecturespecific programming models for best performance Also exploring OpenMP offloading for

HEP-CCE

Portable Parallelization Strategies (PPS)

	CUDA	Kokkos	SYCL	HIP	OpenMP	alpaka	std::par
NVIDIA GPU			intel/llvm compute-cpp	hipcc	nvc++ LLVM, Cray GCC, XL		nvc++
AMD GPU			openSYCL intel/llvm	hipcc	AOMP LLVM Cray		
Intel GPU			oneAPI intel/llvm	CHIP-SPV: early prototype	Intel OneAPI compiler	prototype	oneapi::dpl
x86 CPU			oneAPI intel/llvm computecpp	via HIP-CPU Runtime	nvc++ LLVM, CCE, GCC, XL		
FPGA				via Xilinx Runtime	prototype compilers (OpenArc, Intel, etc.)	protytype via SYCL	

Argonne

Portable Parallelization Strategies

HEP-CCE

Ported representative testbeds from ATLAS, CMS and DUNE to each portability

lay	/er.	Kokkos	SYCL	OpenMP	Alpaka	std::par
	Patatrack	Done	Done*	WIP	Done*	Done compiler bugs
	Wirecell	Done	Done	Done	no	Done
	FastCaloSim	Done	Done	Done	Done	Done
	P2R	done	Done	OpenACC	Done	Done

Evaluated each porting experience according to a number of different objective and subjective metrics.

Related talks:

- p2r [Monday 11AM]
- Patatrack [Thursday 12PM]

- FastCaloSim: overview [Tuesday 3PM]
- <u>FastCaloSim: OpenMP</u> (poster)
- FastCaloSim: alpaka + std::par (poster)

Brookhaven⁻ **Fermilab**

NVIDIA® OptiX[™] Ray Tracing Engine -- Accessible GPU Ray Tracing

OptiX makes GPU ray tracing accessible

- Programmable GPU-accelerated Ray-Tracing Pipeline
- Single-ray shader programming model using CUDA
- ray tracing acceleration using RT Cores (RTX GPUs)
- "...free to use within any application..."

OptiX features

- acceleration structure creation + traversal (eg BVH)
- instanced sharing of geometry + acceleration structures
- compiler optimized for GPU ray tracing

https://developer.nvidia.com/rtx/ray-tracing/optix

User provides (Green):

- ray generation
- geometry bounding boxes
- intersect functions
- instance transforms

Flexible Ray Tracing Pipeline

Green: User Programs, Grey: Fixed function/HW

The computational challenge for TPCs based on liquid Argon (LArTPCs):

Test Detector Geometry: Liquid Argon: x y z: 1 x 1 x 2 m (blue) 5 photo detectors (red) photon yield (no E-field): 50000 γ /MeV single 2 GeV electron (shower not fully contained)

(low Z=18, low $\rho = 1.78 \text{ g/cm}^3$).

- ~ 7x10⁷ VUV scintillation photons are produced/event.
- Using Geant4 (11.1.p01) to simulate photon generation and propagation o using a single core on an Intel[®] Core i9-10900k@ 3.7Ghz takes :
 - ~ 10 minutes/event

(Compared to **0.034 seconds/event** without optical photon simulation) \rightarrow LArTPC-Experiments use look up tables and parameterizations instead of full simulation for photon response.

Shown are only steps and particle tracks handled by Geant4, no optical photons.

Hans Wenzel

May 8 to 12, 2023

New Simulation Chain

CORSIKA Server

- CORSIKA was modified to run as a server which can be configured with individual primaries (thanks to D. Baack)
- Different CORSIKA cards for different showers
 - The energy needed to reach the detector is highly dependent on the inclination of the shower
 - The energy at which CORSIKA will stop propagating particles is now higher for inclined showers
- Showers with higher energy leading edge muons are undersampled:
 - Showers with low energy muons are killed before the rest of the shower is calculated
- Since individual particles are sent over IPC no files are written avoiding IO bottleneck

New CORSIKA Server will set the minimum muon energy higher for more inclined showers

Kevin Meagher - Parallelization of Air Shower Simulation with IceCube - 12

Celeritas version 0.3-dev: Geant4 integration status

- Imports EM physics selection, cross sections, parameters
- Converts geometry to VecGeom model
- Offloads EM tracks from Geant4
- Scores hits to user "sensitive detectors"
- Includes GPU-optimized simple calorimeter
- Integrates with Geant4 10.6–11.0
- Supports physics/geometry/setup changes at link/run time

Celeritas is not designed to be a prototype code

OLD MADEVENT (CURRENT: LHC PROD) SINGLE-EVENT API

MG5aMC: old and new architecture designs

MATRIX ELEMENT: CPU BOTTLENECK IN OLD MADEVENT First we developed the new ME engines in standalone applications

> 1. STANDALONE (TOY APPLICATIONS) MULTI-EVENT API

Then we modified the existing all-Fortran MadEvent into a <u>multi-event</u> framework and we injected the new MEs into it

> 2. NEW MADEVENT (<u>GOAL: LHC PROD</u>) MULTI-EVENT API

Argonne 🕰

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release

S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023

Université catholique

Reweighing

- If new physics doesn't affect later simulation stages: Only need to regenerate events (Note: Very hard condition)
- → Can recycle simulations (Note: Must simulate orig. evt.)
- Furthermore: Event generation factorises, too

Imperial College London

Monte Carlo simulations

Figure 2: Breakdown of estimated compute workloads in 2028 for ATLAS

Over 50% is required by Monte Carlo related workloads

GPUs at the High Level Trigger

CMS has leveraged GPUs for the online reconstruction at High Level Trigger (HLT) starting from the beginning of Run-3 (2022-today)

What has been offloaded to GPU :

- ~25% of online reconstruction:
 - Pixel track reconstruction ECAL & HCAL local reconstruction

CHEP2023 - Running GPU enabled CMSSW workflows through the production system - Charis Kleio Koraka - Tuesday May 9th 2023

So what 'stuff' can we throw away?

- ▶ The problem is no longer one of rejecting (trivial) background
- Fundamentally changes what it means to trigger

Instead, we need to categorise different 'signals'

- Requires access to as much of the event as possible, as early as possible
- Solution: Drop the L0 trigger, reconstruct 30 MHz of events before making trigger decisions!

MANCHESTER 1824

LHCb GPU

Introduction

The LHCb detector

Upgrade 1

Why GPUs

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

5/13

LHCb offline activities: computing resource requirements 0000

LHCb & Supercomputers

Fechnical solutions

s Con ooc Backup ooooo

DIRAC Workload Management System & Supercomputers?

Fast Calorimeter Simulation for GPU Portability Studies

ATLAS needs lots of simulation

- Simulation for background modeling is paramount for precision physics
- Lack of MC-based statistics limited results in Run-2
 - will be worse for Run-3 and beyond

A very large fraction of the simulation's computational budget is spent in the LAr Calorimeter

 Parametrized simulation is enormously faster than full Geant4 simulation (complex detector geometry)

FastCaloSim is small, self-contained, has few dependencies, and already has a CUDA port

- Offloading simulation to GPUs can help stay within ATLAS's compute budget
- 3 "kernels": workspace reset, simulate, reduce plus small data transfers from device to host
- Code organized to share maximum functionality between all implementations

Calorimeter-dominated

HEP-CCE

Brookhaven^{*} **Fermilab**

Year

Conclusions and outlook

- LHCb has high demands of throughput of reconstruction and selection on GPUs to cope with high signal rates
- Machine learning ideal to reduce rates while keeping signal efficiencies high

- Introducing flexible loading of ML models at the first trigger level (running on GPUs) with TensorRT
 - Multiple copies of typical sized MLPs seems to effect throughput in an acceptable way
- Promising avenue of having flexible ML reconstruction and selection at the first trigger level!

Architecture

Cost effectiveness

We tested workflows for both small and ML board (ebaz4205, zedboard, alveo u50)

Kserve extension implementation

The main components that we developed are:

- Custom WebUI to hide complexity to the user
 - A Kubeflow managed solution exists, we are planning to integrate this work eventually
 - We need additional metadata to be passed (e.g. board model, provider, hls engine etc)
- Translate a model load request into conditional actions
 - Load the bitstream file from the remote location directly
 - Pre built by the user on its own
 - **building a firmware** "seamlessly" on an external building machine
- Eventually load the firmware on the FPGA board via the development of a grpc server installed on the machine that have access to the board

SONIC

• Within CMS software (CMSSW), the IaaS deployment scheme is called "Services for Optimized Network Inference on Coprocessors" (SONIC)

Physics performance

- Moving from a full-fledged software implementation of the VELO clustering to a FPGA-based one required a careful evaluation of possible impacts on physics performances in terms of
 - \circ Cluster efficiency \rightarrow find hit on detector
 - \circ Cluster residual \rightarrow match hit position
 - \circ Track efficiency \rightarrow find track
 - \circ Track resolution \rightarrow match track parameters

Track type	Quantity	CPU clusters [%]	FPGA clusters [%]
All VELO tracks	efficiency clone	$\begin{array}{c} 98.254 \pm 0.007 \\ 1.231 \pm 0.006 \end{array}$	$\begin{array}{c} 98.254 \pm 0.007 \\ 1.234 \pm 0.006 \end{array}$
Long tracks	efficiency clone	$\begin{array}{c} 99.252 \pm 0.006 \\ 0.806 \pm 0.006 \end{array}$	$\begin{array}{r} 99.252 \pm 0.006 \\ 0.806 \pm 0.006 \end{array}$
	ghost	0.848 ± 0.003	0.928 ± 0.003

• FPGA algorithm tracking performance is nearly indistinguishable from CPU/GPU clustering

FPGA-based real-time cluster finding

Abstract Processing Environment for Intelligent Read-Out systems based on Neural networks

- Input data from several different channels (data sources, detectors/sub-detectors).
- Data streams from different channels recombined through the processing layers using a low-latency, modular and scalable network infrastructure
- Distributed online processing on heterogeneous computing devices (FPGAs for the moment) in n subsequent layers.
- Typically features extraction will occur in the first NN layers on RO FPGAs.
- More resource-demanding NN layers can be implemented in subsequent processing layers.
- Classification produced by the NN in last processing layer (e.g. pid) will be input for the **trigger processor/storage online data reduction stage for triggerless systems.**

INFN

Jefferson Lab Overview of Quantum Algorithms for NHEP

"Low-Level" Algorithms

- Grover's & Shor's algorithms
- Provable speedup / error correction required

Universität Regensburg

Quantum Simulation

- Mimic system using simplified model
- Classically likely intractable

Unorthodox Approaches

- Quantum annealing, adiabatic quantum computing
- (Gaussian) Boson sampling, etc.

NISQ Algorithms

- Variational algorithms: Hybrid quantum-classical
- Less resources / potential speedups

 \Rightarrow Strong coupling to hardware properties

Results Noisy Simulation

- Noise-free Simulation:
 - Validation Accuracy: 0.857 (Step 11)
 - Validation Loss: 0.155 (Step 11)
- Noisy Simulation:
 - Device: IBM Perth
 - Validation Accuracy: 0.854 (Step 11)
 - Validation Loss: 0.154 (Step 11)

- 1. Use Case
- 2. QAG Model
- 3. Architecture
- 4. Training

5. Inference

6. Quantum Noise

Study

6.1. Inference

- 6.2. Training
- 7. Conclusions

Valle Varo valle.varo@desy.de

Precise Quantum Angle Generator Designed for Noisy Quantum Devices.

5. Inference

Geant4 0.35 QAG 0.30 (a.u.)) 0.20 6.15 0.10 0.05 0.00 2 5 6 3 4 7 0 1

Results with real data

- We applied this algorithm to real ATLAS data taken by non-physics random triggers.
- The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks.
- The annealing time was compared with MC sample(10 pions/event with pile-up 20).

- Our algorithm also works successfully with real ATLAS data.
- It is a good starting point to further explore the method.

WASEDA University

Quantum Support Vector Machines: Results

- We construct boosted ensembles of 200 QSVMs.
- Due to simulation constraints, the CV models only include the inital displacement.

Higgs classification

Quantum Support Vector Machine for the *ttH(bb)* event classification^[5]

B Meson Continuum Suppression

Weightings in data:

3 particles : 20%

4 particles : 14%

5 particles : 18%

6 particles : 12%

Weighted Averages:

Permutation Invariant = 0.77 Non-invariant = 0.67

HEPCloud-Rigetti Pre-Production (Aug '22)

