Massive-scale Data
Analytics at the Linac
Coherent Light Source

CHEP 2023, Norfolk

Jana Thayer/LCLS Data Systems Division Director
May 11, 2023

Many thanks to the people doing all the honest work:

Ric Claus, Dan Damiani, Chris Ford, Mikhail Dubrovin, Victor Elmir, Wilko Kroeger, Xiang Li, Valerio Mariani,
Silke Nelson, Ariana Peck, Frederic Poitevin, Chris O’Grady, Julieth Otero, Omar Quijano, Murali Shankar,
Monarin Uervirojnangkoorn, Matt Weaver, Seshu Yamajala, Chuck Yoon, Cong Wang, Zhantao Chen

d

1 A7y rone Stanford | /%
= 2=%¢ ACCELERATOR \
B N\ ABORATORY

University

wn




Outline

New infrastructure and analysis methods that leverage massive data quantities will
maximize the science output from LCLS

® About LCLS
e Challenges for LCLS Data Analytics
e Patterns for workflows
o On-the-fly data reduction: Data Reduction Pipeline
o Heterogeneous pipelines: Building intelligent, adaptable detector systems
o Quasi-real-time workflows with results within minutes
m Compute-intensive streaming analysis of Th/s datza streams
m Adaptable real-time ML workflows
® The future: Integrated Research Infrastructure and HPDF
e Conclusions
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LCLS-II: SLAC'’s largest data and computing challenge

® Ultrafast x-ray pulses from LCLS are used
like flashes from a high speed strobe light,
producing stop action movies of atoms and
molecules.

® Both data processing and scientific
interpretation demand intensive
computational resources.

® Characterized by time-sensitive and data
integration-intensive workflows



Many compute-intensive workflows, one scalable data system

Coherent Scattering
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2023: 20 GB/s, 4 TF (reduction), 34 TF (analysis)
2026: 80 GB/s, 34 TF (reduction), 270 TF (analysis)

Liquid scatterlng

2023: 40 GB/s, <1 TF (reduction), 20 TF (analysis)
2026: 320 GB/s, <1 TF (reduction), 50 TF (analysis)

Resonant Inelastic Scattering
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2023: 20 GB/s, 4 TF (reduction), 1 TF (analysis)
2026: 200 GB/s, 40 TF (reduction), 2 TF (analysis)

X-ray Emission Spectroscopy
(XES)

il

2023: .1 GB/s, <1 TF (reduction), .2 TF (analysis)
2026: 10 GB/s, <1 TF (reductlon) 20 TF (analysis)

Coincidence Spectroscopy
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2021: 200 GB/s, <1TF (reduction), <1TF (analysis)

Nonlinear Spectroscopy
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2023: 20 GB/s, 3 TF (reduction), <1 TF (analysis)
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2026: 80 GB/s, 16 TF (reduction), <1 TF (analysis)
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Data Life Cycle and the Compute Needs of the Typical User

A Day in the Life of a User
e Typical experiments last 5 days of 12 hour shifts.
e During data collection:
o Must be able to get real-time (~1 sec) feedback and the quality of data-taking, e.g.
m Are we getting all the required detector contributions for each event?
m Is the hit rate for the pulse-sample interaction high enough?
o Must be able to get feedback about the quality of the acquired data with a latency lower (~1 min)
than the typical lifetime of a measurement (~10 min) in order to optimize the experimental setup
for the next measurement, e.g.

m Are we collecting enough statistics? Is the S/N ratio as expected?
m Is the resolution of the reconstructed electron density what we expected?

e During off shifts: must be able to run multiple passes (> 10) of the full analysis on the data acquired
during the previous shift to optimize analysis parameters and code in preparation for the next shift
e During the 4 months after the experiment, must be able to analyze the raw and intermediate data on

fast access storage in preparation for publication
e After 4 months, must be able to restore archived data to test new ideas, new code, new parameters



LCLS Data Challenges

® LCLS-Il Upgrade: greater data velocity and volume
Data Rates: 120 Hz to 1 MHz (10000x)
Raw Data Volumes: 2 GB/s to 200 GB/s (100x)
Recorded Data Volumes: 2 GB/s to 20 GB/s (10x)
Computational Requirements: 80% ~1 PF, 20% ~1 ExaFLOP
e Fast Feedback: real-time analysis (seconds/minutes) is essential
to the users’ ability to make informed decisions during an LCLS
experiment.
e Variability:
o Wide variety of experiments with turnaround ~days
O Large dynamic range: device readout 0.01 Hz - 1 MHz
o Data Complexity: Variable length data (raw, compressed)
O Access patterns to data vary by experiment and detector
O Analysis is a mix of tried-and-true & innovative techniques
® Time to Science: Development cycle must be fast & flexible
® No user left behind: alleviate the pressure on users to gather
resources to mount a significant computing effort.
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LCLS Data System, a scalable, adaptable system

LCLS facility provides stewardship of core hardware/software infrastructure for data
acquisition, data reduction, online monitoring, data storage and management, and offline
analysis processing and framework.

Users provide the last mile: develop their own analysis on top of this stack.
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New for LCLS-II

LCLS Data Reduction Pipeline (DRP) ey [ ==

| Mg e |

All experiments reduce data during processing — Data Reduction Pipeline does it in real time

Data reduction toolbox of parameterized

> Data Reduction Pipeline .
: Software Trigger Nodes algorithms runs on DRP compute layer:
D— | Compressor Nodes . . .
: Fast compression, feature extraction, trigger/veto,
D— : Feedbac Iti ducti
v : kLayer Multi-event reduction
] nVRAM . .
; ( ) Software Trigger Nodes perform online event-
g:ti;z;' : Infiniband i I build collecting data from multiple detectors
Online Monitoring from the same event. Two decisions per event,

per shot: Store or not? Send data to online
monitoring?

100 Hz stream of “leaked”, unreduced events
accompanies reduced data.
""""" I e T CPU and FPGA available in DRP .

PVA
EPICS Status: Successfully acquiring 200 GB/s at 1

MHz with data reduction




Automated Data Movement and Run Processing

Automated data/metadata capture and movement; configurable and automated workflows

User LCLS . Off-site compute
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https://doi.org/10.1107/5160057752000425

SparkPix-RT: Intelligent Detector Systems for 1 MHz readout

Triggering/Compression within ASIC reduces data volume, alleviates data transport bottleneckRate

reduction

LCLS needs streaming feature extraction on high rate data from large ASIC Level
imaging detectors to enable smart, autonomous experiments ’l\/ ‘ \7 - L

e Fast readout of the desired data .

e Alleviate downstream network, storage, and computing FPGA Level ~

bottlenecks 4 L
Enabling data reduction/feature extraction at the ASIC/FPGA level is ‘ B
challenging because ASICs/FPGAs may only see a fraction of the
image (potentially uncorrected) while the offline analysis sees fully EDGE Farm of FPGAs
calibrated, complete images. Computing }
on camera

o Develop intelligent auto-correction techniques

® Provision for buffering and deadtime ‘

o Develop triggering capability CPUs/GPUs

e Determine what kind of information extraction is feasible }

e Provide for data validation and model training

Versatility
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https://doi.org/10.1107/S1600577520004257

Single Particle Imaging High Rate Analysis

Determine the 3D molecular structure of nanoparticles (time-resolved, at room temperature)
Three key steps for high rate analysis workflow:

1. DRP: Fast Data Reduction using Veto. Hit or Miss? (> 10x reduction)
2. Accurate classification: ldentify single hits
3. Reconstruction: Orientation recovery: phase retrieval

M”“_i Coherent Intensity map Interpretation of
. . megapixel scattering from multiple system structure /

o!n.dIVIdueﬂ particles are detector image pulses dynamics

injected into the 5 o

focused LCLS pulses ol
eScattering patterns are 6 GBI/s

collected pulse-by- ) - —>

pulse 100 GB/s
eParticle concentration

dictates “hit” rate

e 8kHzin 2024
(4 MP)
e 40 kHzin 2027
(16 MP)
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https://doi.org/10.48550/arXiv.2206.11992

Quasi-real-time analysis using NERSC

ExaFEL project streams data to NERSC for analysis results within minutes
Testing data
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https://doi.org/10.48550/arXiv.2206.11992

https://doi.org/10.48550/arXiv.2105.13967

Actionable Information from Sensor to Data Center (AISDC)
Providing Actionable Information by linking Al/ML at the Edge with HPC

Implement Al/ML at the Edge; develop workflows that stream data to a specialized data center at Argonne to
achieve a turnaround time between initialization and model delivery to Edge host of < 10 minutes

- i

= ~<_ Argonne
-

Data center/ Model

Edge computer
= Al computer repository

Trained models

Training data

Beamline

Reduced/
filtered data

Simulated
dats r
Other analyses -
sl onventional Training data
supercomputer repository

. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office
e of Basic Energy Sciences under Award Number FWP-100643 and FWP-35896.
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ASCR Defines a Unified Vision for Scientific Computing for Facilities

ASCR: IRI-ABA -

Laboratory
Compute
Assets

Experimental and Observational
User Facilities

Advanced
ﬁ Networking
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Computmg

Software

Software and
Appllcatlons

Al Tools
Digital Twins

Advanced Data
Management

Integrated Research Infrastructure Architecture Blueprint Activity

CIoud
Computl ng

Sensors
at the edg

Researchers

Advanced Data
Capabilities

Data Repositories
PuRE Data Assets

New modes of ) .
. . Rapid data analysis
integrated science and steering of
experiments

Novel models for
multi-facility
allocation/utilization

Al-enabled insight
from dynamic, vast
multi-modal data

Seamless user
interconnectivity via
federated IDs

Vision: A DOE/SC integrated research ecosystem that transforms science via seamless interoperability.

LAB 23-3020: The High Performance Data Facility (HPDF) will serve as a foundational element enabling the DOE

Integrated Research Infrastructure.

S3DF would like to participate in IRl ecosystem as both a source of data and a compute facility serving 80% of LCLS

experiments



Summary

LCLS Data Systems infrastructure scales to meet high-throughput, compute-intensive
demand:

Real-time data analysis capabilities (data reduction, complex workflow orchestration)
On-demand utilization of super-computing environments

Pipeline spans from Detector Edge to HPC

Strategically developing Al/ML for targeted applications

Intelligent detectors and real-time analysis enable autonomous experiment steering

Lessons learned:

Modularity is key for rapidly adaptable workflows

Seamless access to computing with transparent data movement is crucial for users

Ease-of use is important: hide the computing complexity where possible

ML at the edge is hard and creates new compute-intensive workflows

A common software ecosystem is greatly desired, but difficult to achieve; users will always
need some experiment-specific software
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Backup

More details
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LCLS and ATLAS: Similar but very different

Courtesy of Richard Mount (circa 2017)

LCLS-II LCLS-II ATLAS Today ATLAS 2026+
2022 2029+

Wanted fraction of collisions 0.01t0 1.0 0.01t0 1.0 <10° <10°
Typical experiment duration (same 3 days 3 days 3 years 3 years
data-taking conditions)
24x7 availability of offline computing Essential Essential Desirable Desirable
Required turnround for data-quality Seconds to Seconds to Hours to days Hours to days
checks minutes minutes
Raw digital data rate 200 GB/s 1000+ GB/s 160 GB/s 1,000 GB/s
Zero-and-Junk-suppressed rate 10 GB/s 100+ GB/s 1.5 GB/s 20 GB/s
Storage need dominated by Mainly raw data Mainly simulated and derived data
Role of Simulation Growing in science analysis Vital in physics analysis
Growing in experiment design Vital in experiment design
Analysis, Simulation and Workflow Individuals (in the past) ~100 organized collaborators

Software development community — Organized effort (mainly research physicists)



LCLS-II data challenge

Megapixel X-ray diffraction Intensity map from Interpretation of system
detector image multiple pulses structure / dynamics

> 10x reduction

(NERSC, LCF)

Up to 1 TB/s 100 GB/s
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Compare with HL-LHC (2029+)

GlgggﬁérneSJZOOO PB stciiagg %Mf+ cores and expects Tbps networking

detector collisions

Discoveries and
Measurements

Multiple selected datasets
# Real Data
Simulated Data

~10° reduction

~1 TBIs ~20 GB/s Clustors » HPC
L}
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Courtesy Richard Mount, circa 2017



Progress: Actionable Information to reconstruct attosecond pulses

SLAC NeuralNet Library (SNL) framework enables deployment of Al inference in FPGAs
e Developed a structured Al inference library in High-Level Synthesis which enables high rate data processing &
low latency feedback by deploying Al inference in FPGAs.
e Target Al networks with 10+ layers
e Implement CookieNet feature extraction to reconstruct time-energy distribution of an attosecond FEL pulse in
real-time (at 1 MHz) in FPGA to reduce 100 GB/s =1 GB/s
e Support rapid deployment of weights and biases = networks to adapt to changing experimental conditions

convolutional layer 1 pooling layer L fully connected MLP |

input image e — feature maps classifier
Feature extraction followed by classification Deployment will consist of PCIE
based FPGAs in rack mount servers
SLAL 2002 1DAC- Data Systems This material is based upon work supported by the U.S. Department of Energy, Office of Science,

Office of Basic Energy Sciences under Award Number FWP-100643 and FWP-35896.



