Integrated Research Infrastructure – Architecture Blueprint Activity

Connecting instruments, data, and minds

Jini Ramprakash
Deputy Division Director, Argonne Leadership Computing Facility

May 10, 2023
The U.S. Department of Energy’s Argonne National Laboratory delivers world-class research, technologies, and new knowledge that aim to make an impact — from the atomic to the human to the global scale.
DOE User Facilities

- **Cutting-edge resources**: Advanced tools, instruments, and expertise
- **Open access**: Available to academia, industry, and government researchers
- **Collaboration**: Interaction with scientists from various fields
- **Education and training**: Workshops, seminars, and skill development
- **Economic impact**: Driving scientific advancements and innovations
- **U.S. competitiveness**: Supporting groundbreaking discoveries
- **National priorities**: Research in security, energy, and sustainability

Argonne National Laboratory DOE User Facilities

- Advanced Photon Source
- Argonne Tandem Linear Accelerator System
- Argonne Leadership Computing Facility
- Center for Nanoscale Materials
- Atmospheric Radiation Measurement – The Southern Great Plains
The people of the ASCR Facilities: Providing high performance Research Computing, Data, and Networking for DOE and the Nation
DOE SC
Advanced Scientific Computing Research User Facilities

The Advanced Scientific Computing Research (ASCR) program leads the nation and the world in supercomputing, high-end computational science, and advanced networking for science.

ALCF and OLCF make up the DOE Leadership Computing Facility

Argonne Leadership Computing Facility (ALCF)
Oak Ridge Leadership Computing Facility (OLCF)
National Energy Research Scientific Computing Center (NERSC)
Energy Sciences Network (ESnet)
DOE’s Integrated Research Infrastructure (IRI) Vision:
To empower researchers to meld DOE’s world-class research tools, infrastructure, and user facilities seamlessly and securely in novel ways to radically accelerate discovery and innovation

New modes of integrated science

- Experimental and Observational User Facilities
- Data Management
 - High Performance Data Facility
 - Data Repositories
 - PuRE Data Assets
- Advanced Networking
- Advanced Computing
- Software
 - Software and Applications
 - AI Tools
 - Digital Twins
- Edge Sensors
- Local Campus Computing
- Computing Testbeds
- Cloud Computing
- AI-enabled insight from integrating vast data sources
- Rapid data analysis and steering of experiments
- Novel workflows using multiple user facilities
Integration of instrumentation, data, and computing infrastructure are essential requirements for national R&D objectives.
In 2020-21, the ASCR IRI Task Force organized the ASCR Facilities’ thinking and approach

Toward a Seamless Integration of Computing, Experimental, and Observational Science Facilities: A Blueprint to Accelerate Discovery

About the ASCR Integrated Research Infrastructure Task Force

There is growing, broad recognition that integration of diverse experimental research infrastructure holds enormous potential to accelerate discovery.¹ The complexity of data-intensive modeling/simulation or experimental/observational approaches to complex, data-intensive research workflows poses challenging problems to the research community with large-scale, high-end computing, high-performance networks to advance the SC mission and broader Department of Energy (DOE) and ASCR Facilities are already working with other SC approaches to complex, data-intensive research workloads.

Within the Department of Energy’s Office of Science (OoSC), ASCR will play a major role in developing and advancing computational and data research infrastructure that meets the needs of scientific discovery. ASCR will play an essential role in the integration of computational and data research infrastructure that supports high-end computing, high-performance networks, and the development of new applications that advance the national mission and broader Department of Energy and ASCR Facilities. The ASCR Facilities are already working with other SC approaches to complex, data-intensive research workloads.

1Flexibility……assembly of resource workflows is facile; complexity is concealed
2Performance……default behavior is performant, without arcane requirements
3Scalability……data capabilities without excessive customizations
4Transparency……security, authentication, authorization should support automation
5Interoperability……services should extend outside the DOE environment
6Resiliency……workloads are sustained across planned and unplanned events
7Extensibility……designed to adapt and grow to meet unknown future needs
8Engagement……promotes co-design, cooperation, partnership
9Cybersecurity……security for facilities and users is essential
Finding: Across DOE, innovators have been taking concerted steps towards integration through research, partnerships, and lab-level projects

- LBNL’s Superfacility project
- ORNL’s INTERSECT initiative
- ANL’s Nexus work
- NERSC-LCLS LLANA software project
- ECP ExaWorks & ExaFEL projects
- BES DISCUS Light Source Data Working Group project
- BES-ASCR CAMERA applied math center
- BER joint EMSL-JGI FICUS joint-allocation program
 … and more

These are all separate initiatives with similar integration goals. Let’s now row in the same direction!
Integrated Research Infrastructure

- Discoverable data repositories
- Algorithms, math, and AI/ML
- Scalable software library
- Seamless real-time on-demand computing
- Storage
- Network improvements
- Workflow and orchestration tools
- Experimental Facilities
- APS
- Computing Resources (Edge, Local, Laboratory, Cloud, HPC, HEC)

Argonne National Laboratory’s NEXUS
Experiments Integrating Research Infrastructure

<table>
<thead>
<tr>
<th>Impact</th>
<th>Accomplishments</th>
<th>Status</th>
</tr>
</thead>
</table>
| • APS scientists use Mira to process data from live HEDM experiments, providing real-time feedback to correct or improve in-progress experiments | • Real-time analysis of experimental steering
• **Cable flaw was found and fixed at start of experiment**, saving an entire multi-day experiment and valuable user time and APS beam time. | • Workflow is established
• Augmenting real-time scheduling |

1. **Analyze**
2. **Assess**
3. **Fix**
4. **Re-analyze**
5. **Valid Data!**

Red indicates higher statistical confidence in data

H. Sharma, J. Almer (APS); J. Wozniak, M. Wilde, I. Foster (MCS)
Experiments Integrating Research Infrastructure

Experiments Integrating Research Infrastructure

Utilizing leadership computing facility for continuous near real-time XPCS data processing

Balsam enables transparent access to remote resources

- Identity management
- Simplified scheduler API
- High-speed transfers via Globus

- Continuously executed for 48+ hours
- Process data in near real-time with XPCS-Eigen using special queue on Theta

In late 2021, SC Leadership charged ASCR to devise and lead the Office of Science IRI Architecture Blueprint Activity.

Devised, organized, and implemented the IRI ABA

- **HQ Executive Leadership**
 - Ben Brown
 Director
 ASCR Facilities Division
 - Bill Miller
 Senior Technical Advisor
 ASCR Facilities Division

- **IRI-ABA Leadership Group**
 - Debbie Bard
 Group Lead for Data Science Engagement
 NERSC, LBNL
 - Eric Lancon
 Director, Scientific Data and Computing Center
 BNL
 - Amber Boehnlein
 Chief Information Officer
 JLab
 - Jini Ramprakash
 Deputy Division Director
 ALCF, ANL
 - Kjersten Fagnan
 Chief Informatics Officer
 JGI, LBNL
 - Arjun Shankar
 Section Head, Advanced Technologies
 OLCF/NCCS, ORNL
 - Nicholas Schwarz
 Group Leader, Scientific Software
 Eng. & Data Mgmt., APS, ANL
 - Chin Guck
 Group Lead for Planning and Architecture
 ESnet, LBNL

Activities

- Exchanged on urgent IRI needs, priorities, & commonalities across programs.
- Engaged and provided feedback at key points on Activity progress and outputs.

Convened over 150 DOE national laboratory experts from all 28 SC user facilities across 13 national laboratories to consider the technological, policy, and sociological challenges to implementing IRI.

Leadership

- **BER** Paul Bayer, Jay Hnilo, Resham Kulkarni
- **BES** Tom Russell
- **FES** Josh King, Matt Lanctot
- **HEP** Jeremy Love, Eric Church
- **IP** Kristian Myhre
- **NP** Xiaofeng Guo, Jim Sowinski
IRI Blueprint Activity Key Results

We now possess a reference framework to inform a coordinated, SC-wide strategy for IRI.

The key organizing elements of the IRI Framework are Science Patterns and Practice Areas:

> **IRI Science Patterns** that represent integrated science use cases across DOE science domains and

> **IRI Practice Areas** that will support the realization of a DOE-integrated IRI ecosystem.
The IRI Framework: Science Patterns

IRI Science Patterns are broad classes of integrated research workflows with common driving features. Each Science Pattern represents a spectrum of DOE science domains and will benefit from a strategic and coordinated approach to design and solution. A given workflow case may span several Science Patterns.

Time-sensitive pattern has *urgency*, requiring real-time or end-to-end performance with high reliability, e.g., for timely decision-making, experiment steering, and virtual proximity.

Data integration-intensive pattern requires combining and analyzing data from multiple sources, e.g., sites, experiments, and/or computational runs.

Long-term campaign pattern requires sustained access to resources over a long period to accomplish a well-defined objective.
The IRI Framework: Practice Areas

IRI Practice Areas are cross-cutting communities of practice whose efforts will be essential to advance robust and extensible IRI designs and solutions.

User experience practice will ensure relentless attention to user perspectives and needs through requirements gathering, user-centric (co)-design, continuous feedback, and other means.

Resource co-operations practice is focused on creating new modes of cooperation, collaboration, co-scheduling, and joint planning across facilities and DOE programs.

Cybersecurity and federated access practice is focused on creating novel solutions that enable seamless scientific collaboration within a secure and trusted IRI ecosystem.

Workflows, interfaces, and automation practice is focused on creating novel solutions that facilitate the dynamic assembly of components across facilities into end-to-end IRI pipelines.

Scientific data life cycle practice is focused on ensuring that users can manage their data and metadata across facilities from inception to curation, archiving, dissemination, and publication.

Portable/scalable solutions practice is focused on ensuring that transitions can be made across heterogeneous facilities (portability) and from smaller to larger resources (scalability).
IRI in the FY 2024 President’s Budget Request

ASCR Facilities

“In FY 2024, the ASCR facilities will continue planning and begin implementation to advance DOE’s Integrated Research Infrastructure (IRI) so that researchers can seamlessly and securely meld DOE’s unique data, user facilities, and computing resources to accelerate discovery and innovation.”

High Performance Data Facility (HPDF) project

“The proposed HPDF will serve as a foundational element in enabling the DOE Integrated Research Infrastructure; will provide crucial resources to Office of Science programs to attack fundamental problems in science and engineering that require nimble shared access to large data sets, increasingly aggregated from multiple sources; will partner and operate in concert with other ASCR Facilities and potentially other DOE laboratory computing resource providers to provide a high availability high performance computing ecosystem for a wide variety of applications; will serve as a ‘Hub’ enabling ‘Spoke’ sites to deploy and orchestrate distributed infrastructure to enable high priority DOE mission applications.”

See DOE Lab Funding Announcement LAB 23-3020 for more information.

https://science.osti.gov/grants/Lab-Announcements/Open
IRI Look Ahead for 2023

- Release of **IRI Blueprint Activity** final report
- Release of **ESnet Requirements Reviews IRI meta-analysis**
- Release of the ASCR Facilities’ **IRI Testbed** whitepaper
- **High Performance Data Facility project**
- **What’s next**
 - Early IRI partnerships: identifying and forging
 - Steering/governance of the IRI Program: growing into our shoes
 - IRI Testbed: describing what it is and how to engage
Thank You