
● Nuclear physics experiments increasing to O(1000) user community
○ Particularly Electron-Ion Collider, but following path by STAR/PHENIX/sPHENIX/GlueX/etc
○ Changing expectations: streaming readout through globally distributed computing centers;

regional access to automatically replicated data; tight integration of metadata with original data;
data analysis preservation; FAIR data access; alignment with science/industry standards

● User-centered design in practice at the Electron-Ion Collider:
○ What is user-centered design? Who are the users?
○ Gaining understanding → communicating understanding → implementing better solutions
○ Intentional selection process for software components, as well as for computing infrastructure

Data Management in Nuclear Physics:
Cultural Change For Larger Collaborations

Wouter Deconinck, University of Manitoba

With input from Markus Diefenthaler, Sylvester Joosten, Kolja Kauder, and many others. Supported in part by NSERC SAPIN-2020-00049, SAPPJ-2021-00026.

● First major collider to be built in
North America in the 21st century

○ Polarized electrons, 10-20 GeV
○ Polarized light ions (p, d, 3He) and

unpolarized nuclei → U, 50-250 GeV
○ Center of mass energy of 20-140 GeV
○ High luminosity 𝓛 of 1034 cm-2 s-1

● International facility, approx $2.6B
● Large community of 1200+ users at

220+ institutions in 30+ countries
● Mass of nucleon? Spin of nucleon?

Emergent properties of dense
gluons systems?

Preparing for the Electron-Ion Collider Era (2030s)

● 2016: EIC Software Consortium as part of EIC Generic R&D program
○ Activities included: interoperability and common interfaces between simulation components
○ Produce consensus-based community documents setting out vision for EIC software

● 2019: EIC User Group Software Working Group
○ Community endorsement of software as a valuable endeavor for the EIC user group
○ Focus on preparing the community for detector collaborations

■ Coordination during Yellow Report preparation
■ Coordination during detector proposal development

● 2022-2023: ePIC Collaboration Computing & Software WGs
○ Single software stack decision process, together with EICUG SWG
○ Balancing rapid project progress with need to organize collaboration around future-oriented

software: new nuclear physics tools needed for the scale of the Electron-Ion Collider
● Overall goals: development of a community-supported full-lifecycle software

stack for nuclear physics; prevent fragmentation; encourage modularity

Milestones in the Electron-Ion Collider Development
Software

Preparing for the Electron-Ion Collider Era (2030s)

Requirements are different from many previous nuclear physics experiments:

● Single site (Long Island, NY), but two host labs (BNL, JLab), and developed
as highly international facility with e.g. EIC RRB, significant international
in-kind contributions, including for distributed computing
○ Strong desire to use distributed computing while previous nuclear physics experiments have

primarily used host lab resources (GlueX and others: extensive use of Open Science Grid)
● From triggered to streaming readout; offline reconstruction to rapid results

○ Data streams sent to distributed computing sites during data taking for immediate processing
○ Reconstructed data and analyzed results available on distributed storage with rapid turnaround

Unique opportunity to develop the data analysis environment in the AI/ML era;
novel methodologies required (similar to or even beyond HEP in some areas)

Electron-Ion Collider’s Butterfly Model of Computing

Flexibility to add new computing infrastructure;
scaling with community size and computing
requirements; inclusion of HPC for AI/ML

The presence of two host labs with MOUs with
various universities means that a model of one
hub with many spokes will not be a natural
evolution. This computing model has wings.

International agencies want to support their
researchers in their science programs with
in-kind computing resources, but only if those
are inherent part of the computing strategy.

Instead of a primary focus on a single site for
computing (as is still common in nuclear
physics), the EIC community envisions a
distributed computing model from the start.

Electron-Ion Collider Requires a Cultural Change

Culture [ˈkəl-chər] (noun)
“The way we do things around here” (Deal and Kennedy, 1982)

The evolution in nuclear physics data management that has lead us up to the EIC
is requiring nuclear physicists to “do things differently around here”

● computing/software systems are becoming larger, more complex (no more:
nuclear physics is “like HEP but where you can still understand all the parts”)

● systems must be conquered with modern organizational practices: code
reviews, social coding, well defined interfaces, intentional decision making,...

● different classes of users must adapt in different ways (professor != student)

To guide this culture change, we must understand our community.

What is User-Centered Design?

Multi-stage problem-solving process that requires software developers
● to analyze and envision the way users are likely to use a product,
● to validate their assumptions in real world tests.

In nuclear physics computing, in the context of the Electron-Ion Collider:
● Long-term researchers (pre-existing mental models and expectations)

○ Faculty, staff scientists
○ Experienced in the traditional ways, too busy to learn a new language or tool (unless we make

it easy to change existing mental models: it is our task to know the users’ attitudes)
● Short-term researchers (frequent training need, short-term career goals)

○ Undergraduate, graduate researchers, post-doctoral researchers
○ Trained in more modern languages (or not at all), motivated to learn and apply new skills if

empowered and transferable to future opportunities

User-Centered Design at the EIC

● Annual “State of EIC Software” exercise (2021, 2022)
○ Quantitative survey with consistent questions from year to year (observe longitudinal impact)
○ Qualitative focus groups (~5 users each) to drill into recurring themes for classes of user

● Development of user personas to highlight diversity of experiences

Computing is

1. Diverse
2. Integrative
3. Heterogeneous
4. User-centered
5. Accessible
6. Reproducible
7. Collaborative
8. Agile

User-Centered Design:
● State of Software Survey
● Follow-up Focus Groups
● Develop Testing Community

Data and Analysis Preservation:
● User Analysis Code/Software Registry
● Tutorials on Reproducible Analyses

Discoverable Software:
● Consistent Across Points of Entry
● Feasible Option for >80% of EIC

Simulations and Analyses

Workflows:
● Template Repositories

○ Key Analyses
○ Validation Workflows

● Workflow management services

User-Centered Design at the EIC: Model for Software

Most of these approaches are new to nuclear physicists!

● Using open-source, community-oriented software components from NP-HEP,
with focus on software sustainability in selection

EDM4eic data model based on EDM4hep and podio.
Geometry Description and Detector Interface using DD4hep.

MC Event
Generators

Detector
Simulations in

Geant4

Readout
Simulation

(Digitization)

Reconstruction
in JANA2

Physics
Analyses

Modular Simulation, Reconstruction, and Analysis Toolkit using tools from the NP-HEP community

Continuous Integration (GitHub, GitLab) for Detector and Physics Benchmarks and Reproducibility

User-Centered Design at the EIC: Software Stack

Geometry Description and Exchange: DD4hep

Requirement: consistent geometry for simulations, reconstruction, data taking

● DD4hep: Abstraction layer for Geant4, TGeo, and other geometry consumers
● Geometry service from simulation through reconstruction and analysis
● Community-managed external project with large experimental user base

Data Model: podio, EDM4hep, EDM4eic

Use of standard interfaces between individual simulation, reconstruction, and
analysis tasks creates modularity that allows easy exchange of components.

● podio (github.com/AIDASoft/podio)
○ Text-based definition of flat data models
○ Automatic C++ and Python interfaces
○ Stored inside ROOT files or other formats

● EDM4hep (github.com/key4hep/EDM4hep)
○ Designed as a standard for current/future HEP
○ EDM4eic: few EIC-specific extension data types
○ Struggled to define in EIC for several years

https://github.com/AIDASoft/podio
https://github.com/key4hep/EDM4hep
https://github.com/eic/EDM4eic

Code Repositories and Continuous Integration
Code Repositories:

Centralized collaborative development of all
software components, for preservation of a full
record of the development activity.

Several widely used options based on git:

● GitHub (github.com or enterprise)
● GitLab (gitlab.com or self-hosted)

We use a GitHub organization, github.com/eic

Milestones and versioning, reproducibility,
preservation, collaboration, code review

Continuous Integration/Deployment (CI/CD):

A strategy of automatic evaluation of software
components, and of automatic deployment
into testing and production environments.

Tightly integrated with repositories:

● GitHub
● GitLab

We use GitLab instances on national lab
resources triggered from GitHub.

Automation, quality control, workflows,
deployment into production environments

15

https://github.com/eic

Community-Supported Components

Experiment-agnostic community software projects are key to our strategy.

● Key4HEP turnkey software stack, Phoenix event display, HSF conditions
database reference implementation, Acts track reconstruction

● Spack package management, Rucio scientific data management

Thanks to all HEP Software Foundation, AIDAInnova, IRIS-HEP,... contributors!

Challenges to this model we are navigating in the nuclear physics community:

● Users’ lack of understanding that external projects do not work “for” the EIC
(because that’s all they have ever known in entirely home-grown software)

● “Externality” risk attributed by project management to community-supported
software components

Community-Supported Components: Acts

Weekly dev
meeting with
involvement of
users at multiple
experiments

Status of work
visibility through
presentations

Example of agile
in community
software

Community-Supported Components: Spack

● HPC with strong engagement
with/from the NP/HEP community

● Weekly open telcon meetings: any
users are welcome to bring up
issues (also: office hours)

● Appreciation/gripes channels on
slack with low-barrier user feedback

Applying This to Distributed Computing Infrastructure

Underlying themes:

● Using industry/HEP-standard community tools over home-grown code:
Experience with tools and languages that are recognized as important will help
researchers get a foot in the door on the job market, while externalizing the
development of software frameworks that do not require data analysis skills

● Allowing researchers to innovate and modify quickly through modularity:
Flexibility to modify independent parts of the data flow or analysis chain allows
researchers to develop the relevant data analytics skills and portfolio, rather
than getting stuck trying to modify a mountain of interconnected code

This is a decision process with user input to play out over the next year.

Summary

● The Electron-Ion Collider brings nuclear physicists in a new and unfamiliar
regime of collaboration at the scale of HEP. Traditionally centralized software
and computing will need to be replaced by distributed computing practices.

● Navigating this change in culture requires an understanding of the users.
Through user-centered design and user inclusion in software selection
processes, we have selected large community-supported software and
computing components (a process we continue to follow for future decisions).

User-Centered Design
at the Electron-Ion Collider

Milestones in the Electron-Ion Collider Development

23

● 2021: Large detector proposal development:
○ ATHENA: 3T solenoid, Si+MM+GEM tracker, imaging barrel EM cal, proximity-focused RICH
○ ECCE: 1.5T BaBar solenoid, Si+muRWell trackers, projective SciGlass EM cal, modular

RICH

○ CORE: smaller effort focused on specific exclusive reaction channels at 2nd IR
● 2022: Selection of ECCE proposal as reference for EIC project detector

○ DPAP advisory panel: ECCE design achieves physics goals with lowest risk and cost
○ Successful integration of ATHENA and ECCE communities within two months(!)

● 2023: Detector TDR for EIC Project CD-2/3a review (by January 2024)
○ 2022: technology selection for few areas where multiple options
○ 2023: finalization of design parametrization

ATHENA: A Totally Hermetic
Electron-Nucleus Apparatus

Milestones in the Electron-Ion Collider Development

● 2016: EIC Software Consortium as part of EIC Generic R&D program
○ Activities included: interoperability and common interfaces between simulation components
○ Produce consensus-based community documents setting out vision for EIC software

● 2019: EIC User Group Software Working Group
○ Community endorsement of software as a valuable endeavor for the EIC user group
○ Focus on preparing the community for detector (proto-)collaborations

■ Coordinate during Yellow Report preparation
■ Coordinate during proposal development process
■ Prevent (attempt to) fragmentation of software efforts, focus on modularity

● 2022: EIC “Detector-1” Computing and Software Working Group
○ Single software stack decision process, together with EICUG SWG
○ Short term goals in organizing collaboration around single software stack: at best half of the

collaboration will need to learn a lot of new things (at worst the whole collaboration).

Software

Fun4All

● Data analysis & simulation framework of
the (s)PHENIX experiments at RHIC,
adapted for the Electron-Ion Collider and
the ECCE proposal

● ROOT-based and steered through
macros

● Training benefits:
○ ROOT is the same familiar user interface

that everyone is already proficient in
(though most users still stuck on ROOT5)

● Disadvantages:
○ Not easy to satisfy Statement of Principles

From Two EIC Software Stacks…

DD4hep + Gaudi

● Developed for the ATHENA proposal
based on experience of LHCb and in
alignment with key4HEP project

● Many different modules interfacing with
each other

● Training challenges:
○ Multiple different packages with different

languages and usage patterns
○ Built on new approaches not traditionally

used in nuclear physics
○ Tendency of nuclear physicists to avoid

anything not developed in-house

Challenge: how to convince users to abandon what they are familiar with?

… to a Single Software Stack for the EIC

● Advantage of the ability to start from a blank slate, including AI/ML
● Only way to meet the performance requirements for the EIC:

○ Streaming readout, distributed computing
○ Heterogeneous computing and flexibility for future hardware changes

● Deliberative single software selection process ongoing
○ Consider each component separately (geometry encoding, data model, reconstruction

framework, code repository, data analysis preservation, etc)
○ Develop a community requirements document with stakeholder input
○ Invite open submission of proposals solutions for each component
○ Presentation and discussion of pros and cons, in the context of the statement of principles
○ Attempt at consensus building among computing/software experts
○ Open for endorsement by community members
○ Consensus positions reached: GitHub repository hosting, gitlab CI backend, DD4hep

geometry definition, podio data models, EDM4hep initial data model, JANA2 reconstruction

Applying This to Distributed Computing Infrastructure

“One size fits all” solutions are overwhelming

● E.g. from raw data to final histograms in one process
● Advantages: centralized framework allows for code reuse
● Disadvantages: modifications have steep learning curve, no branch points for

new development

Many monolithic “modular” frameworks in circulation

● Over-designed class hierarchies, limited to single language and workflow
● Modularity only by implementing different classes in a strict syntactically

enforced environment

Monolithic Frameworks Limit Flexibility

Towards independent processes with minimal operations (modularity)

● Formatted input and output streams (JSON, XML)
● Each process is responsible for one task (decoding, correcting, fitting,

calibrating, regression,...), modifications can be more easily overseen
● Scalability in number of cores and across connected sites
● Compartmentalization of functionality
● Full container approach (e.g. Docker)

Importance is in the data model in addition to algorithms

● With clearly defined interfaces between individual operations, individual
algorithms can be swapped out easily

Agile Management of
Scientific Software Projects

Project Management: Waterfall vs. Agile
Waterfall

● DOE/DOD/NASA: WBSes, gantt charts
● Large projects, extensive planning
● Reqts drive cost and schedule

Agile
● Start-ups and collections of small teams,

changing reqts
● Current cost and schedule drive

features/priority iteratively

Source: Scaled Agile Inc.

Project Management: Waterfall vs. Agile

Source: Scaled Agile Inc.

Agile Manifesto (2001, http://agilemanifesto.org/)

● Individuals and interactions over processes and tools
● Working products over comprehensive documentation
● Customer collaboration over contract negotiation
● Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on
the left more.

Related initiatives: User-Centered Design, Lean, Toyota Production System,
DevOps,... Even novels have been written about these approaches:
The Goal (Eliyahu Goldratt), The Phoenix Project (Gene Kim et al.)

Project Management: Waterfall vs. Agile

http://agilemanifesto.org/

Project Management: Waterfall vs. Agile

Source: Scaled Agile Inc.

Plan = backlog of tasks/stories
PO = product owner (i.e. customer)
SM = scrum master (i.e. team leader)
Review = demo of current prototype
Retro = retrospective of team activity

Core components of agile frameworks

● Easy visualization of work in progress
○ Reduce work in process, “batch size of one” in manufacturing, avoid multi-tasking
○ Make status of work visible, kanban boards (ready, doing, done)

● Frequent feedback on project progress and people performance
○ Daily or near-daily short stand-up meetings
○ Iterative sprints with customer
○ Retrospections on team performance

● Continuous improvement
○ Learn by doing, learn by failing
○ Encourage experimentation
○ Affordable loss principle instead of focusing on possible gain

These are desirable aspects in education as well as project management.

Conclusion

Get to know the user community

Get to know the user community incentives for using software

Involve the user community in your software development

User-Centered Design at the EIC

Who Are Scientific Computing Users?

● Long-term researchers (in particular faculty) are largely disconnected from
direct low-level software tasks, instead looking at physics outputs
○ common complaint: students don’t see the physics, only the code!
○ suggested solution: maybe they shouldn’t be writing as much code then?

● Short-term researchers are trained or in training, and not (typically) proficient
in software development until later in their student career (learning by doing,
but often without training wheels)

● Yet, at least 50% of their time is spent on writing code instead of thinking
about physics (e.g. graduate students at LHC)

● Nuclear physics data analysis has gotten a reputation of being coding intensive
at the expense of generating physics insights

Short-Term Researchers

Bachelor degrees in physics
● Only 1 out of 6 physicists continues to PhD degree (AIP SRC)
● All other physicists not included in “traditional physicists” interpretation

PhD degrees in physics
● Majority of the permanent jobs is outside of academic research
● About 1700 physics PhDs per year, but significantly fewer jobs
● All other physicists not included in “traditional physicists” interpretation

Mismatch between curriculum and reality of physics teaching
● How can we prepare short-term researchers better for their most likely career?
● How can we align the training of short-term researchers with the skills they will

benefit from?

Joint Task Force on Undergraduate Physics Programs

Promote career readiness: Scientific and technical skills
● “Competencies in instrumentation, software, coding, and data analytics.”
● “Introduce students to industry-standard tools and software packages.” (what

we call “transferable skills” in other contexts)

Findings (https://www.compadre.org/JTUPP/report.cfm)
● “The overwhelming majority of physics bachelor’s recipients

are employed outside academia for all or part of their careers.”
● “Since only about one-third of physics Ph.D. recipients end up

in academic careers, even students who plan to obtain
graduate degrees will benefit from developing skills and
knowledge that are valued outside the academic community.

https://www.compadre.org/JTUPP/report.cfm

Who Are Scientific Computing Users?

User-centered design of scientific computing in nuclear physics

● The users (and sometimes developers) of scientific computing in nuclear
physics are predominantly the short-term researchers, i.e. graduate students
and postdoctoral researchers

● User-centered design means alignment of scientific computing with goals of
its users: only that will ensure adoption of our products

Physicists Are Not Preferred Data Scientists Anymore

Over the previous two decades...

● Rapid expansion of data collection capabilities outside of research enterprise,
surpassing what high energy and nuclear physics have routinely dealt with for
years

● This expansion and presence of physicists with large-scale data analytics
training resulted in employment opportunities for many physicists

Physicists Are Not Preferred Data Scientists Anymore

But the educational environment has adapted rapidly

● Nearly every college or university has now implemented a data science
concentration, minor, or major, with relevant content based on requirements in
industry: relevant algorithms, languages and platforms

● Nuclear and high energy physics have remained largely the same: no major
changes in languages, no major adoption of new methodologies (maybe one
exception: GPUs)

● Physicists have lost their edge in the big data analytics job market
● Discipline has lost access to a lot of short-term researchers with training

and interest in careers in big data analytics

Intermediate Conclusion

Physics graduate students and postdocs participating in nuclear physics data
analysis research are likely to find permanent employment outside of academic
research. If we are to continue attracting outstanding researchers, we should
provide researchers with the scientific and technical skills for future careers inside
and outside academia, in particular in data science. In the development of a
user-centered scientific computing environment, we must keep the motivations of
our short-term researchers in mind.

EIC State of Software Survey

ELECTRON ION COLLIDER USER GROUP
USER SURVEY AND FOCUS GROUPS
First Insights

1. State of Software Survey: First annual survey of software use in the EIC User Group.

2. User Focus Groups: In-depth follow-up discussions, at first based on career stage.

by Dave Chopard (JLab), Wouter Deconinck (Manitoba), Markus Diefenthaler (JLab), Rebecca Duckett
(JLab), Sylvester Joosten (ANL), and Kolja Kauder (BNL).

User-Centered Design:
● State of Software Survey
● Follow-up Focus Groups
● Develop Testing Community

Data and Analysis Preservations:
● User Analysis Code/Software Registry
● Tutorials on Reproducible Analyses

Discoverable Software:
● Single Point of Entry (~ key4hep)
● Feasible Option for >80% of EIC

Simulations and Analyses

Workflows:
● Template Repositories for Key

Analyses
● Template Repositories and Validation

Workflows

User-Centered Design: Listen to the Users, and/then Develop Software

Notes:
● Distribution methodology: Emails and reminders to EICUG mailing list.
● This year’s data collection has been completed. Your suggestions may be

implemented in the next state of software survey (schedule for early 2022).
● A careful balance between collecting detailed information and avoiding survey

fatigue means that some tools could not be include as predetermined options.

ELECTRON ION COLLIDER USER GROUP
1. STATE OF SOFTWARE SURVEY

What is your current role in the EIC project?

Other (N = 1): semi-retired senior researcher

Feedback from Expression of Interests (link)
Contributions from Ph.D. students will increase
over time.

https://indico.bnl.gov/event/9913/contributions/43326/

Over the past year, which physics event generation tools did you use for EIC
simulations?

Other (N = 9): personal computer codes (N = 2), ACT, CLASDIS, ComptonRad, GRAPE-DILEPTON,
MADX, MILOU, OPERA, RAYTRACE, Sartre, Topeg, ZGOUBI

Over the past year, which detector simulation tools did you use for EIC
simulations?

Other (N = 2): GEMC, RAYTRACE

Over the past year, which analysis tool(s) did you use for EIC simulations?

Other (N = 4): Rivet, ACE3P, jas4pp, custom codes

Over the past year, which resources did you use for EIC simulation and analysis?

Over the past year, how did you access the computing resources for EIC analysis?

Do you have any comments on your current experience with EIC Software?

There are too many generators
and simulation tools used at the
moment.

5 x

The group should focus on full
Geant4 simulation.

1 x

● Lack of documentation.
● More tutorials would be

beneficial.
3 x

N = 9

Notes:
● Selection methodology: Volunteered during focus groups or personal contacts.
● This year’s data collection based on career stage has nearly been completed.
● Future focus groups may be targeted based on software survey responses.

ELECTRON ION COLLIDER USER GROUP
2. USER FOCUS GROUPS

Grouping Criterion: Career Stage
● Graduate students (n = 2)
● Junior postdocs (n = 4)
● Senior postdocs (n = 3)
● Staff scientists (n = 5)
● Professors (n = 5, to be scheduled)
● Physicists in industry (n = 10, to be scheduled)

Approach: Prompted Discussion, 1 hour or longer
● What software are you currently using, and why?
● Are you able and do you feel comfortable performing the computational aspects?
● What software or computing barriers do you encounter in your research?
● What do you think stopping physicists from participating in simulation or analysis?
● Which software tools do you particularly enjoy using, even if not EIC related?

First Round of Focus Groups

Attributes of users:
● Low vs. high experience with physics computing
● Self-identification as user vs. developer
● Desire for guidance vs. self-starter mentality
● Need for custom software vs. availability of off-the-shelf functionality
● Positive vs. negative attitudes towards the process of writing software
● Positive vs. negative attitudes towards other users of the software
● Emotional or career investment in software
● Low vs. high ability to influence community, through positional power or power of

expertise

Connection with general personality traits:
● Openness to the risk of new experiences: conservative vs. creative
● Conscientiousness: quick-and-dirty hack jobs vs. elaborate architectures
● Ability to compromise: autonomous vs. cooperative development

Towards Personas and User Profiles: Attributes

We score all participants on each attribute, normalize, then use k-means clustering
and principal component analysis to identify the groups and distinguishing
directions in attribute space.

OR

We follow a qualitative approach where similar statements by multiple participants
and recurring quotes are foregrounded, and where we attempt to identify common
themes across focus groups.

?

Towards Personas and User Profiles: Methodology

Along one set of axes (~experience, ~attitude towards writing software):
● Starting Scientist

○ new to the field, don’t know how to get information, dependent on others
● Starting Scientist with CS/CE Experience

○ new to the field, but with programming experience, dependent on others
● Software Using Scientist I

○ not interested in programming but competent, wishes for more documentation
● Software Using Scientist II

○ likes programming, contributes documentation to projects
● Software Developing Scientist I

○ active developers of large projects or frameworks
● Software Developing Scientist II

○ high-level perspective from experience
● Software Project Owning Scientist

○ in charge of an entire software project

Towards Personas and User Profiles

Along another set of axes (~attitudes towards users):
● Software as a necessary tool: “I like software, to the extent that it helps me get

physics done. Give me a good example, and I’ll use your software.”
● Software is not my strong suit: “I am a bad programmer. I know. I write crappy

code. Don’t force me to share my code with others. I am ashamed of it.”
● Software as part of my research: “I use software tools for my research project. I feel

comfortable in using the software and modifying it for my needs. I share my
modifications but software development is not my priority.”

● Software is a social activity: “I like to write software with and for others. I know I
can write software pretty well, and I want to help people who don’t like it.”

● Software emperors: “I write the best software. I know how physics software should
be written. Just follow my software-imposed rules.”

Towards Personas and User Profiles

Towards Personas and User Profiles: Comments

Maybe we need dedicated people
who only write documentation.

Lost lot of time due to lack of
documentation, out-of-date
documentation.

Installing software can be frustrating
due to obscure dependencies.

Debugging code in containers
often was laborious.

Being in multiple experiments makes
it hard to get proficient in the
software tools used in each.

Tutorials seem aimed at showing
off software, not really teaching
how to do something.

There is still a reluctance to
having analysis live in jupyter
notebooks.

More than 70% of the time I have
to go through the source code to
figure it out. If I am stuck, I send an email or

ask on Mattermost.

I don’t like to bother the main
developer and prefer asking a
peer first.

Don’t tell me to sign up for a
mailing list: send an invite around
that I can click on.

I don’t use git. No one is going
to use my code anyway.

Thank you to everyone who participated in the EICUG State of Software survey and Focus Groups. The
Software Working Group will repeat the survey at the end of 2021 to compare results as we continue to
design and build the Electron-Ion Collider.

Next steps
● We will organize further focus group discussions that will result in personas and user stories.
● The user stories will provide input to software developers as to which users they are writing software for.

ELECTRON ION COLLIDER USER GROUP
USER SURVEY AND FOCUS GROUPS

Appendix: Survey Questions

Q1. What is your current role in the EIC project?
○ Undergraduate student
○ Graduate student (M.Sc.)
○ Graduate student (Ph.D.)
○ Postdoctoral researcher
○ Early-career scientist (pre-tenure, assistant professor, staff scientist < 5 years)
○ Mid-career scientist (tenure, associate professor, staff scientist 5-10 years)
○ Senior scientist (full professor, staff scientist > 10 years)
○ Other (please specify)

Q2. Over the past year, which physics event generation tool(s) did you use for EIC simulations?
Check all that apply.

□ Geant4 (particle gun)
□ BeAGLE
□ Djangoh
□ eSTARlight
□ Herwig
□ lAger
□ Pythia8
□ Pythia6
□ Sartre
□ Other (please specify)

Q3. Over the past year, which detector simulation tool(s) did you use for EIC simulations? Check
all that apply.

□ ROOT
□ Geant4
□ DD4hep
□ Delphes
□ Eic-smear
□ EicRoot
□ ESCalate
□ Fun4All
□ Other (please specify)

Q4. Over the past year, which analysis tool(s) did you use for EIC simulations? Check all that
apply.

□ ROOT
□ EicRoot
□ ESCalate
□ Fun4All
□ Jupyter
□ Python (NumPy/Pandas/...)
□ Spreadsheets
□ Other (please specify)

Q5. Over the past year, which resources did you use for EIC simulation and analysis? Check all
that apply.

□ Local computer (desktop or laptop)
□ Computing resources at my institution (e.g. university)
□ Computing resources at BNL or JLab
□ National computing facilities (e.g. Open Science Grid, Compute Canada)
□ Commercial cloud providers (e.g. AWS, Azure, Google Cloud)

Q6. Over the past year, how did you access the computing resources for EIC analysis? Check all
that apply.

□ Local computer access
□ Command line on remote systems (Secure Shell, Tmux)
□ X forwarding of individual windows
□ NX, VNC or other remote desktop
□ Web-based interfaces

Q7. Do you have any comments on your current experience with EIC Software?

Q8. Are you interested in volunteering for future focus group discussions on EIC Software? If
so, please enter your email address.

