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Simulation Landscape
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“FullSim”
• Common software framework 

(i.e. Geant4)
o Experiments can provide 

additional code via user actions
• Explicit modeling of detector 

geometry, materials, interactions 
w/ particles

“FastSim”
• Usually experiment-specific 

framework
• Implement approximations: 

analytical shower shapes (e.g. 
GFLASH), truth-assisted track 
reconstruction, etc.

arXiv:hep-ex/0001020

M. Selvaggi

Delphes
• Ultra-fast parametric simulation
• Used for phenomenological 

studies, future projections, etc.

Simulation is 
crucial in HEP!

https://arxiv.org/abs/hep-ex/0001020
https://indico.cern.ch/event/397113/contributions/1837819/


AI† Landscape
• Options to use ML† for sim:

1. Replace or augment (part or all of) Geant4

2. Replace or augment (part or all of) FastSim

• Goals:

1. Increase speed while preserving accuracy

2. Preserve speed while increasing accuracy

• ML can also create faster, but less accurate simulation

o à la existing classical FastSim

 then augment w/ more ML to improve accuracy

• Another option: replace entire chain (“end-to-end”)

o Exciting prospect, potentially complements other cases

† “AI” or “ML” here: almost always deep neural networks (DNNs)
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• FastSim

• Geant4

• Delphes

• ML?

(ML?)

arXiv:2203.08806

ML can also be used 
for event generation, 
hadronization, etc.!

https://arxiv.org/abs/2203.08806


Taxonomy
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• Generative models (“replace”):
o Usually stochastic
o Generative Adversarial Networks (GANs)
o Variational Autoencoders (VAEs)
o Normalizing Flows (NFs)

• Refinement techniques (“augment”):
o Usually deterministic
o Classification-based (reweighting)
o Regression-based (correcting)

arXiv:2203.08806

https://arxiv.org/abs/2203.08806


Metrics
• Speed only matters if needed accuracy is achieved
o Wrong answers can be obtained infinitely fast

• Looking at 1D histograms: not good enough!
o Can miss high-dimensional correlations

• Best category: integral probability metrics

o Wasserstein distance W1: F is set of all K-
Lipschitz functions
 Only works well in 1D, biased in high-D

o Maximum mean discrepancy (MMD): F is unit 
ball in reproducing kernel Hilbert space
 Depends on choice of kernel

o Fréchet distance: W2 distance between 
Gaussian fits to (high-D) feature space
 Features can be hand-engineered or obtained 

from NN activations
• Another interesting category: classifier scores
o Train NN to distinguish real vs. generated
o AUC score ranges from 0.5 to 1.0

• Fréchet Particle Distance most clearly 
distinguishes between two similar approaches 
(message passing GAN and generative adversarial 
particle transformer)
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arXiv:2211.10295

https://arxiv.org/abs/2211.10295


Common Datasets

• Common datasets are crucial to compare different generative methods

o Using all the metrics just discussed (and more)

• Already many new methods developed for the challenge!

o Some will be shown at CHEP this week
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#549
• CaloChallenge: first competition for 

generative ML for detector simulation

• Three public datasets provided:

1. Low granularity, irregular geometry 
(based on ATLAS calorimeter), photon 
& pion showers

2. Medium granularity, silicon-tungsten 
sampling calorimeter, electron showers

3. High granularity, otherwise same as #2

https://indico.jlab.org/event/459/contributions/11731/
https://calochallenge.github.io/homepage/


Generative Models at Colliders: ATLAS

• FastCaloGAN architecture: W1 used as loss
o Stabilizes GAN training & performance

• Separate GANs trained for 100 η slices and for 
each particle type: γ, e, π±, p
o Hyperparameters optimized for each particle

• Irregular geometry voxelized for training
• Incorporated in AtlFast3 along with FullSim and 

FastSim modules (depending on particle type, etc.)

• Good agreement for protons (new!)

• Hybrid approach improves modeling of high-
level quantities
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#420

#424

https://indico.jlab.org/event/459/contributions/11426/
https://indico.jlab.org/event/459/contributions/11762/


Generative Models at Colliders: LHCb

• “Stacked GAN” approach to parameterize 
different detector aspects
o Cramér distance related to W1

• Tracking resolution: well reproduced in pT & φ

• Global PID 
variables also well 
reproduced:
o Top: K± vs. π±

o Bottom: μ vs. p
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LHCB-FIGURE-2022-004

#629

https://cds.cern.ch/record/2806749
https://indico.jlab.org/event/459/contributions/11454/


Generative Models for Neutrino Experiments
• Outside of collider physics: major computing hurdle is optical photon propagation
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GENN architecture

Outer product used in 
place of convolution: 
faster (CPU) inference

arXiv:2109.07277

• SIREN: SInusoidal
REpresentation
Networks
o Sine function used 

for activation
 Can reproduce 

high-frequency 
features

 Continuous & 
differentiable 
→ represents 
gradients as 
well as values

(ICARUS detector;
top: photon library, bottom: SIREN)

arXiv:2211.01505

#463

https://arxiv.org/abs/2109.07277
https://arxiv.org/abs/2211.01505
https://indico.jlab.org/event/459/contributions/11727/


Generative AI in Industry
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Diffusion Autoregression

• No GANs, VAEs, NFs in sight!
o Although sometimes used as components of larger models

• GANs especially disfavored: lack of convergence, mode collapse, vanishing gradients…
o Issues can be mitigated, but newer architectures benefit from avoiding them altogether

https://openai.com/dall-e-2/
https://openai.com/dall-e-2/
https://parti.research.google/
https://parti.research.google/
https://imagen.research.google/
https://imagen.research.google/
https://nuwa-infinity.microsoft.com/
https://nuwa-infinity.microsoft.com/
https://www.midjourney.com/home/
https://www.midjourney.com/home/
https://stability.ai/
https://stability.ai/
https://openai.com/product/gpt-4
https://openai.com/product/gpt-4


Use Industry AI for HEP?
• DreamStudio results for prompt:

• Cool-looking, but not probably not quite 
accurate enough out of the box…
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A GEANT4 simulation of a pion shower 
with energy 100 GeV in the Compact 
Muon Solenoid High Granularity 
Calorimeter at the CERN Large Hadron 
Collider, a particle physics experiment



New Generative Approaches for HEP
• Extension of L2LFlow 

(arXiv:2302.11594, series of 
stacked, conditioned NFs) to full 
ILD ECAL geometry (30×30×30)
o Outperforms BIB-AE† (GAN-

VAE hybrid) in distributions, 
metrics: W1, classifier AUC
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#523• Transformer architecture with vector quantized 
VAE to learn latent space and autoregressive 
prior to sample from latent space

• Good modeling of moments, work ongoing to 
improve sampling in tails

#405

†Bounded Information Bottleneck Autoencoder

https://arxiv.org/abs/2302.11594
https://indico.jlab.org/event/459/contributions/11716/
https://indico.jlab.org/event/459/contributions/11742/


• CaloDiffusion: denoising diffusion on 
CaloChallenge datasets
o Use cylindrical convolutions, learned 

embedding for irregular geometries
• Classifier AUC 0.6–0.7
o FPD 0.035–0.275, KPD 0.0001–0.006

Diffusion for HEP

• CaloCloud: point cloud diffusion for ILD detector
o Project Geant4 energy steps into highly 

granular grid, smear to dequantize
o PointWise Net w/ EPiC encoder and multiple 

NFs for inference
• Reasonable agreement in photon showers
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#54

Dataset 3

Dataset 2

Dataset 1

arXiv:2006.11239
arXiv:2103.01458

#538

https://indico.jlab.org/event/459/contributions/11736/
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2103.01458
https://indico.jlab.org/event/459/contributions/11777/


Costs & Scaling

• Comparing “last generation” state of the art to 
“new generation” (diffusion-based)
o Caveat: numbers obtained from the Internet

• This table just considers time to train “final” 
version of algorithm
o “Exploration” stage can be orders of 

magnitude higher
 Estimated 92 GPU-years for StyleGAN3, 

115 GPU-years for DALL∙E 2

• Case study: CMS Run 2 MC campaign
o ~100 billion events
o Scale up to HL-LHC (×30): 3 trillion events

• Need reliable generative ML far beyond scale of 
training dataset to be time- and cost-effective
o Ability of a VAE-GAN architecture to 

“amplify” statistical power of input photon 
showers has been demonstrated

o For real deployment,
need to quantify
exactly how much
input data needed
for any given campaign
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Model # params # inputs Time Cost
StyleGAN3 ~20M ~25M ~100 V100 

GPU-days
$2.4K

DALL∙E 2 ~3.5B ~500M ~23 V100 
GPU-years

>$300K

DreamStudio 890M 2.3B ~17 A100 
GPU-years

$600K

arXiv:2202.07352

https://arxiv.org/abs/2202.07352


End-to-end: FlashSim for CMS

• Normalizing flow to predict high-level analysis 
quantities from generator-level information

• Reproduces correlations even in ML b-tagging 
algorithm scores

• Currently covers: jets (real & fake), muons, electrons

• Very promising solution for end-stage analyses
o Effectively infinite MC → minimize statistical 

fluctuations
• Complementary w/ SIM-level solutions
o Need to develop calibrations, algorithms, etc. to 

produce training data for FlashSim
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#476

https://indico.jlab.org/event/459/contributions/11718/


Simulation-Based Inference
• FlashSim: produces 

high-level variables for 
comparison to data

• Only a small (?) step to 
directly produce likelihood 
and/or related quantities for 
inference…
o Learning how underlying 

distributions depend on 
observables/parameters

o Enable direct use of low-
level, high-dimensional data
 Rather than requiring 

dimensionality reduction 
into summary statistics 
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arXiv:1911.01429

https://arxiv.org/abs/1911.01429


SBI for Physics
• Growing usage in astrophysics
o And beyond! http://simulation-based-

inference.org/
• Coverage for 12 lens parameters from DES-like 

dataset using Neural Parameter Estimation 
(normalizing flow) • RASCAL: Ratio And SCore Approximate 

Likelihood ratio
o ML version of matrix

element method
o Learn estimator using

joint likelihood ratio
& joint score

• Matches true contours
for SM EFT operators
o Better agreement

than other methods
CHEP2023 Kevin Pedro 17

arXiv:1805.00013

arXiv:2211.05836

http://simulation-based-inference.org/
https://arxiv.org/abs/1805.00013
https://arxiv.org/abs/2211.05836


ML Refinement for CMS FastSim
• Alternate approach: ML adjusts high-level

quantities from existing FastSim to match FullSim
o Replaces coarse, manual correction factors

• ResNet-like architecture using skip connections
• Loss functions: both ensemble distribution and

object-by-object comparisons
• Improves both 1D distributions and correlations

CHEP2023 Kevin Pedro 18

#83

https://indico.jlab.org/event/459/contributions/11725/


Learning More: Loss Multipliers
• Increasingly common use of multiple terms in loss function to account for different effects

• Problem: in general, can’t optimize for two things at once!

• Instead, optimize one function given a constraint on
another function: L = f(𝜃𝜃) − λ(ε − g(𝜃𝜃))

• Learn loss multipliers λ (instead of just guessing)
using modified differential method of multipliers (MDMM)

o Introduced at NeurIPS in 1987!

• Guarantees convergence on Pareto front

o Whether convex or concave

o Without this technique: accidental convergence at best

 No control over where (combined) loss converges on
convex Pareto front

 Essentially random stopping on concave Pareto front
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#83

https://papers.nips.cc/paper/1987/file/a87ff679a2f3e71d9181a67b7542122c-Paper.pdf
https://indico.jlab.org/event/459/contributions/11725/


Differentiable Programming
• DNN training via gradient descent: enabled by automatic differentiation
o Associate ∂f(x) with f(x) at machine precision by applying chain rule to basic instructions

• Training procedure can be extended to any differentiable function, given an objective for optimization
o “Differentiable” is doing a lot of work here! Many functions do not have well-behaved derivatives
o Alternative to differentiating a difficult function: train a DNN surrogate → ML for simulation
 Convert discrete quantities to continuous: e.g. mixture density networks, or reinforcement learning

• Obvious utility for designing new experiments
o Many choices of quantities to optimize!
 Radiation hardness, physical resolution, cost,

signal sensitivity…
o May need to tune reconstruction algorithms

as well as detector properties (geometry, 
materials, etc.)
 Can extend even further with differentiable

matrix elements, summary statistics, etc.
– Synergy w/ simulation-based inference
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MODE Collaboration, arXiv:2203.13818
(Machine-learned Optimized Design of Experiments)

https://arxiv.org/abs/2203.13818


Detector Optimization

• L-GSO (local generative surrogate optimization)
o Optimize multistage magnet parameters to 

minimize muons hitting detector
o Outperforms 

Bayesian 
optimization: 25% 
lower objective w/ 
smaller magnets & 
similar computation

o Can work w/ 
different surrogate 
methods

• Simplified particle detector: modify radial distance 
of material to achieve mean hit radius = 2

• Successful
even w/ noisy
gradients

• Multiple new
methods for
gradient
estimation in
stochastic
problems
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SHiP (Search for 
Hidden Particles) 
experiment

arXiv:2002.04632

(source)

#542

https://arxiv.org/abs/2002.04632
https://cerncourier.com/a/ship-sets-a-new-course-in-intensity-frontier-exploration/
https://indico.jlab.org/event/459/contributions/11758/


Accelerator Optimization

• Multi-Objective Bayesian Optimization (MOBO) for 
accelerator performance
o Based on Argonne Wakefield Accelerator
o Minimize beam emittance, energy spread, etc. by 

optimizing injector & LINAC parameters
 Uses Gaussian Process surrogate for each objective

• Compares different constraint methods
o Finds Pareto front in each case: better to use MDMM-

like constraint method
CHEP2023 Kevin Pedro 22

(preference)

(constraint)

arXiv:2010.09824

https://arxiv.org/abs/2010.09824


• Muon collider will reach 10 TeV parton energy scale in 16 km ring (vs. 100 km for hadron collider)

• However, more complex machine: several components need to interface smoothly & efficiently

o + novel operations like beam wiggling to mitigate radiation from TeV neutrino interactions

 Ideal case for differentiable optimization!

• Also, machine-detector interface very important: nozzle to mitigate
beam-induced backgrounds from muon decays in flight

 Consider simultaneous optimization of accelerator and detector

o A new frontier for simulation and design

D. Schulte

Optimizing the Energy Frontier: Muon Collider

CHEP2023 Kevin Pedro 23arXiv:2203.07964

https://indico.cern.ch/event/1260648/
https://arxiv.org/abs/2203.07964


A Word From Our Sponsors
• CHEP is chock full of great talks and new ideas about many topics!

o But if you want even more ML for simulation and differentiable programming…

CHEP2023 Kevin Pedro 24

MODE workshop:
July 24–26, 

Princeton, USA

CaloChallenge workshop: 
May 30–31,

Villa Mondragone, Italy

ML4Jets:
November 6–10,
DESY, Germany

https://indico.cern.ch/event/1242538/
https://agenda.infn.it/event/34036/
https://indico.cern.ch/event/1253794/


Conclusion
• Simulation is crucial and faces severe computing challenges
• AI/ML can simulate events “from scratch” (fully generative) or refine existing fast simulations
o Full simulation still essential as source of truth for training

• Numerous architectures have been explored, with promising new developments ongoing
o GANs, VAEs, NFs, transformers, diffusion, autoregression…

• Some experiments already deploying generative ML in production (ATLAS, LHCb)
• Need to think about metrics & training costs to assess viability of ML methods
• End-to-end option starts to approach simulation-based inference
• Going beyond AI/ML, differentiable programming offers new insights into experiment design
• Combined optimization of accelerator & detector design seems very promising; maybe a new frontier!
• Many, many CHEP contributions on these & related topics
o Click the boxes to learn more about those highlighted here
o Check out parallel & poster sessions for even more!
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###



Backup



Challenges

• A new precision era is imminent: HL-LHC, DUNE, LSST, SKA
o 10× or more data compared to existing experiments

• Reconstruction in dense, highly-instrumented environments will need increasing fraction of computing
o e.g. superlinear scaling with simultaneous collisions (pileup) at HL-LHC (up to 200)

• Simulation needs to deliver more events, with more complexity, to match growing data volumes
o …while using smaller fraction of computing!
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DUNE
20▉▉

~30 PB

▉▉

▉▉

▉▉

▉▉

LHC long term schedule

http://lhc-commissioning.web.cern.ch/schedule/HL-LHC-plots.htm


Projections

• Run 2: (full) simulation used ~40% (plurality) 
of grid computing resources for CMS & 
ATLAS [arXiv:1803.04165]
o 70% for LHCb! [LHCb-PUB-2022-010]

• Run 4+: limit to ~10–20%, while simulating:
o Complex detector upgrades
 e.g. CMS High Granularity Calorimeter

o More precise physics models
o More events to reduce statistical uncertainty
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LHCb CPU Usage ForecastCMSOfflineComputingResults CERN-LHCC-2022-005

https://arxiv.org/abs/1803.04165
https://cds.cern.ch/record/2802074
https://lhcbproject.web.cern.ch/lhcbproject/Publications/f/p/LHCb-FIGURE-2019-018.html
https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/


Processors: Old and New
• CPUs: Moore’s Law continues, but Dennard scaling

has broken down → stagnant performance/thread
 Heterogeneous revolution: rise of specialized 

coprocessors attached to general-purpose CPUs
o GPUs (SIMD), FPGAs (spatial computing), ASICs
o Growing taxonomy: even more specialized 

processors emerging, e.g. IPUs (MIMD for ML)
• Deep learning uses limited set of mathematical 

operations: perfect for acceleration on GPUs etc.
o Inference as a service: most general/abstract way

to offload tasks to coprocessors
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IPUs
See also: efforts to port 
FullSim engines to GPUs
(Opticks, Celeritas, AdePT)

#247

https://indico.jlab.org/event/459/contributions/11816/


arXiv:2002.09973

More Detector Optimization
• Proof of concept: grid search (brute force 

approach) for MUonE detector

o Measurement of muon-electron elastic 
scattering vs. q² (relevant to muon g–2)

• Improve resolution by 
optimizing strip sensor 
staggering interval

• TomOpt: optimizing muon tomography detectors

• Example: finding uranium hidden in a truck

o Minimize classification error (and cost) by 
adjusting panel positions and sizes 

• Result: significant improvement in classification
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?

(source)

https://arxiv.org/abs/2002.09973
https://indico.cern.ch/event/1212880/
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