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J U ‘ y 2 O ,‘ 2 ImageNet Classification with Deep Convolutional
Neural Networks

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1ilyalcs.utoronto.ca hinton@cs.utoronto.ca

Abstract

We trained a large, deep convolutional neural network to classify the 1.2 million
high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 dif-
ferent classes. On the test data, we achieved top-1 and top-5 error rates of 37.5%
and 17.0% which is considerably better than the previous state-of-the-art. The
neural network, which has 60 million parameters and 650,000 neurons, consists
of five convolutional layers, some of which are followed by max-pooling layers,
and three fully-connected layers with a final 1000-way softmax. To make train-
ing faster, we used non-saturating neurons and a very efficient GPU implemen-
tation of the convolution operation. To reduce overfitting in the fully-connected
layers we employed a recently-developed regularization method called “dropout”
that proved to be very effective. We also entered a variant of this model in the
ILSVRC-2012 competition and achieved a winning top-35 test error rate of 15.3%,
compared to 26.2% achieved by the second-best entry.
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“New directions in science are

launched by new tools much more
often than by new concepts. The
effect of a concept-driven revolution

is to explain old things in new ways.
The effect of a tool-driven revolution

is to discover new things that have to
pe explained.”

- FREEMAN DYSON




Abstract

Instead of focusing on the concrete challenges of incremental changes to HEP driven by
AlI/ML, it is perhaps a useful exercise to think through more radical, speculative changes.

e \What might be enabled if we embraced a dramatically ditterent approach?
e \What would we lose?

* How would those changes impact the computational, organizational, and

epistemological nature of the field?

What do | mean by “radically ditterent” (for the purpose of this talk)?
e Major reorganization of workflow or change to our tools.

e Some common components may not continue to exist (in the current form).



Code writing



Al writing code, using tools (written by humans)

Prompt:

"Compute the dissociation curve ot H2 using pysct.”
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------ PROPMT ~ ------

Compute the dissociation curve of H2 using pysct
------ END PROPMT ------

import numpy as np

import matplotlib.pyplot as plt

from pyscf import gto, sctf

## Define the molecule
mol = gto.M(atom='H 0 0 O; HO 0 1.4', basis='sto-3g')

# Perform the SCF calculation
sct_eng = scf.RHF(mol)
scf_eng.conv_tol = 1e-9
scf_eng.conv_tol_grad = le-7
scf_eng.kernel ()

## Plot the dissociation curve
dissociation_curve = np.arange(0.5, 3.0, 0.1)
energies = []
for r in dissociation_curve:
mol = gto.M(atom='H 0 0 O; HO O 3}'.format(xr), basis='sto-3g')
scf_eng = scf.RHF(mol)
scf_eng.conv_tol = 1e-9
scf_eng.conv_tol_grad = le-7
scf_eng.kernel()
energies.append(scf_eng.e_tot)

plt.plot(dissociation_curve, energies)
plt.xlabel('Length of bond (Angstrom)')
plt.ylabel('Total energy (Hartree)')

plt.savefig('h2_curve.pdf')
plt.show()




Al-assisted code generation tor HEP

Code output continued:

't is ~guaranteed that Al is going to dramatically

Already useful in HEP | change how HEP physicists write code

Generate algorithm to match reconstructed jets to quarks.

e & Migrate, convert code to new platforms

{
deltaR;

Prompt and response: jetIndex;

( etal,
dEta etal - eta2;
dPhi = abs(phil - phi2);
* (dPhi > M_PI) {
dPhi = 2 * M_PI - dPhi;

Already useful in HEP IV |8

EL: :StatusCode
{

| do have two c++ objects, quarkl and quark2, and a c++ vector called myJets, whose
elements are called jet. For each element of myJets and quarki or quark2 | can calculate a
metric deltaR: deltaR(quarki, jet) and deltaR(quark?2, jet). How can | find the two jets that
minimize the metric deltaR for each, quark1 and quark?2.

XAOD: : TEvent* m_event;
XAOD: : TStore* m_store;

You can find the two jets in the “myJets " vector that minimize the metric deltaR for each &y GP

“quarkl" and “quark2" by iterating over each element in “myJets" and computing the
deltaR for each “quark". Here is an example code snippet that demonstrates how you can

do this: 0O {

Generate ATLAS analysis template

5) Copy code quarklEta XAOD: : ITnit( ) .ignore();

ZH Write me a template for an AthAnalysis based ATLAS analysis

quark1Phi
quark2Eta

m_event wk () ->xaodEvent();

m_store wk()->xaodStore();

@ Sure! Here's a basic template for an AthAnalysis-based ATLAS analysis: EL::StatusCode: : SUCCESS;

[f] Copy code
EL: :StatusCode

{

xXAOD: :EventInfo* evtInfo
m_event->retrieve(evtInfo, ).ignore();
XAOD: : JetContainer* jets
m_event->retrieve(jets, ).ignore();

XAOD: : Jet* jet : *jets) {
jet->pt();

ic EL::AnaAlgorithm {

eta jet->eta();

MyAnalysis() {3}

phi = jet->phi();



https://indico.bnl.gov/event/18372/contributions/75216/

Simulation, Reconstruction, and Analysis



The standard HEP workflow & shortcuts

Analysis

Simulation Reconstruction

Comparison

Track

c candidates
.g ts Track
S segments
c Summable digits
Digits Reponstructed
points
Raw;data Processing

“la mia parabola” Figure by Federico Carminati, independent parallel inventions by Vincenzo Innocente & K.C.



The standard HEP workflow & shortcuts

Analysis

Simulation Reconstruction

Comparison

End-to-end: FlashSim for CMS

*—> FULLSIM

> FASTSIN =  DNGENRN -DNSTVRN . OTCEN .- RECON BN DN R 0 000 FullSim
*r—> FLASHSIM \ FI hS
— asnsim
* Normalizing flow to predict high-level analysis =
quantities from generator-level information o ’ J
T — N

Track
~ candidates
= _ Generative Al will radically
ra : .

g_ segments change fast simulation
c Summable digits

Digits — S — See Kevin Pedro’s talk next

points
Raw;data Processing

“la mia parabola” Figure by Federico Carminati, independent parallel inventions by Vincenzo Innocente & K.C.



Full Simulation
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Full Simulation + reconstruction + analysis
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Full Simulation + reconstruction + analysis
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End-to-End Physics Event Classification with CMS Open Data

A n e X a m p ‘ e O f r a d I C a ‘ C h a n 9 e Applying Image-Based Deep Learning to Detector Data for the Direct Classification

of Collision Events at the LHC

M. Andrews, M. Paulini, S. Gleyzer, B. Poczos

In end-to-end approach, bypass reconstruction, go straight to signal candidates

e Could also bypass event-level classification and go straight to physics result
(measurement, claim of discovery) based on a sample of events

e |oose interpretation of intermediate objects. New approaches would be
needed to evaluate object-level systematics and establish trust in result.

e \Would require a very different organization of computing resources

199S




Reconstruction & Foundation Models

Instead of bypassing reconstruction, replace or
augment the standard reconstructed objects with
a rich, learned (black box?) representation

e e¢.g.the hidden state in the middle of a DNN
e Could use self-supervised learning to tind it
e Basically a compression of the data

A common, general-purpose representation
would serve as a foundation model

e Could have tast sim target this common black
box representation of data

e Could share across experiments

e Could serve as a common data format or as a
target for unfolding
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Deterministic - Probabilistic Reconstruction

Our standard reconstruction produces a deterministic estimate of particle ID,

kinematics, etc. Typically, we process one interpretation of an event.
_ Runjing Liu, et. Al. arXiv:2102.02409

* This is analogous to a catalog in astronomy

Astronomy is increasingly exploring the idea of
probabilistic catalogues

e Address ambiguities in reconstruction pipeline
(e.g. merged objects, photo-z's, ...)

e Analysis ot individual events at LIGO is probabilistic

Conceptually appealing and could improve some analyses, but consequences


https://arxiv.org/abs/2102.02409

Image credit: Wolfgang Liebig talk

Probabilistic Reconstruction

track

Conceptually appealing... but how?
o Attach N-Dim probability distributions to each object

e Similar to what we do for covariance matrix on track
parameters, but want something more tlexible

e How will they be used downstream?

e Once you move away from simple operations or distributions,

o3 \

it gets hard, e.g. Kalman-Filter -> Gaussian Sum Filter etc.

e Sample difterent interpretations & process them the standard way
* Increases computational, storage, & book-keeping requirements
e Similar to systematic variations on simulation, but for data too

Both approaches complicate downstream statistical procedures


https://indico.desy.de/event/1811/contributions/28999/attachments/18628/23786/tracking_vertexing_generic.pdf

Publishing a model for the data distribution

't Generative Al technigues were good enough, we could use the model as a
dramatically compressed representation of the entire dataset

e Conceptually equivalent to publishing mean and std. dev. of a Gaussian

e Could generate synthetic data that follows data distribution without reference to
theory or simulation

 \Would enable comparisons between data and predictions (but need simulation)
 Would be very hard to validate tor complex, high-dimensional data

e Could use same idea in the context of the trigger to represent data we don't keep

Related, high-dimensional unfolding enabled by Al/ML

¢ e.q. OmniFold [Andreassen, Komiske, Metodiev, Nachman, Thaler arXiv:1211.0210/]



https://arxiv.org/abs/1911.09107

Reinterpretation & Connection to Theory



459. Scalable ATLAS pMSSM computational workflows using containerised REANA data analysis

Reinterpretation / RECAST S

't is common in particle physics to:
* scan parameter space of theory, simulate signal for each point
e execute complex worktlow that implements analysis for each parameter point

e determine which regions of parameter space are excludead
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336.Efficient search for new physics using Active Learning in the ATLAS Experiment

. C _F o o Zubair Bhatti, Kyle Cranmer, Irina Espejo, Lukas Heinrich, Phillip Gadow, Patrick
A C t I V e L e a r n I n 9 O r r e I n t e r p r e t a t I O n Rieck and Janik von Ahne on behalf of ATLAS, ATL-PHYS-PUB-2022-045
) active
. . . . . . 2
! Instead of generating MC a priori, generate it on demand where it is relevant! g
O
o,
Drastically more efficient use of computing resources — >
S
Changes traditional relationship between production system & analysis 7 random
Analysis drives production system .
bayes opt f14 4 points
#samples

https://github.com/diana-hep/excursion

DOI 10.5281/zenodo.1634427




336.Efficient search for new physics using Active Learning in the ATLAS Experiment

. C _F o o Zubair Bhatti, Kyle Cranmer, Irina Espejo, Lukas Heinrich, Phillip Gadow, Patrick
A C t I V e L e a r n I n 9 O r r e I n t e r p r e t a t I O n Rieck and Janik von Ahne on behalf of ATLAS, ATL-PHYS-PUB-2022-045
) active
. . . . . . 2
! Instead of generating MC a priori, generate it on demand where it is relevant! g
O
o,
Drastically more efficient use of computing resources — >
S
Changes traditional relationship between production system & analysis 7 random
Analysis drives production system .
bayes opt f14 10 points
#samples

https://github.com/diana-hep/excursion

DOI 10.5281/zenodo.1634427




336.Efficient search for new physics using Active Learning in the ATLAS Experiment

. C _F o o Zubair Bhatti, Kyle Cranmer, Irina Espejo, Lukas Heinrich, Phillip Gadow, Patrick
A C t I V e L e a r n I n 9 O r r e I n t e r p r e t a t I O n Rieck and Janik von Ahne on behalf of ATLAS, ATL-PHYS-PUB-2022-045
) active
. . . . . . 2
! Instead of generating MC a priori, generate it on demand where it is relevant! g
O
o,
Drastically more efficient use of computing resources — >
5
Changes traditional relationship between production system & analysis 7 random
Analysis drives production system .
bayes opt f14 17 points
#samples

https://github.com/diana-hep/excursion

DOI 10.5281/zenodo.1634427




336.Efficient search for new physics using Active Learning in the ATLAS Experiment

. . _F . o Zubair Bhatti, Kyle Cranmer, Irina Espejo, Lukas Heinrich, Phillip Gadow, Patrick
A C t I V e L e a r n I n 9 O r r e I n t e r p r e t a t I O n Rieck and Janik von Ahne on behalf of ATLAS, ATL-PHYS-PUB-2022-045
) active -
! Instead of generating MC a priori, generate it on demand where it is relevant! g o
S | i
. . . “ |
Drastically more efficient use of computing resources — >, J
Changes traditional relationship between production system & analysis 7 random
Analysis drives production system .
bayes opt f14 50 points
#samples

https://github.com/diana-hep/excursion

DOI 10.5281/zenodo.1634427




Anomaly detection

Lots of interest recently in anomaly detection — fueled by machine learning

* Driven by a desire to be model-independent

The LHC Olympics 2020

A Community Challenge for Anomaly
Detection in High Energy Physics

Gregor Kasieczka (ed),! Benjamin Nachman (ed),?? David Shih (ed),* Oz Amram,’

Anders Andreassen,® Kees Benkendorfer,>” Blaz Bortolato,® Gustaaf Brooijmans,’

Florencia Canelli,'° Jack H. Collins,!! Biwei Dai,'? Felipe F. De Freitas,'> Barry M.

Dillon,®1* loan-Mihail Dinu,”> Zhongtian Dong,'® Julien Donini,'® Javier Duarte,'” D.

A. Faroughy!'® Julia Gonski,” Philip Harris,'® Alan Kahn,” Jernej F. Kamenik,®!”

Charanjit K. Khosa,??3" Patrick Komiske,?! Luc Le Pottier,”??> Pablo

Martin-Ramiro,??3 Andrej Matevc,®>!? Eric Metodiev,?! Vinicius Mikuni,'° Inés

Ochoa,?* Sang Eon Park,'® Maurizio Pierini,?> Dylan Rankin,'® Veronica Sanz,??2%

Nilai Sarda,?” Uros Seljak,>%1? Aleks Smolkovic,® George Stein,?'? Cristina Mantilla

Suarez,® Manuel Szewc,?® Jesse Thaler,?! Steven Tsan,!” Silviu-Marian Udrescu,!®

Louis Vaslin,!® Jean-Roch Vlimant,?° Daniel Williams,° Mikaeel Yunus!®

3 Unsupervised

3.1 Anomalous Jet Identification via Variational Recurrent Neural Network

3.2 Anomaly Detection with Density Estimation

3.3 BuHuLaSpa: Bump Hunting in Latent Space

3.4 GAN-AE and BumpHunter

3.5 Gaussianizing Iterative Slicing (GIS): Unsupervised In-distribution Anomaly
Detection through Conditional Density Estimation

3.6 Latent Dirichlet Allocation

3.7 Particle Graph Autoencoders

3.8 Regularized Likelihoods

3.9 UCluster: Unsupervised Clustering

Weakly Supervised

4.1 CWoLa Hunting

4.2 CWoLa and Autoencoders: Comparing Weak- and Unsupervised methods
for Resonant Anomaly Detection

4.3 Tag N’ Train

4.4 Simulation Assisted Likelihood-free Anomaly Detection

4.5 Simulation-Assisted Decorrelation for Resonant Anomaly Detection

(Semi)-Supervised

5.1 Deep Ensemble Anomaly Detection

5.2 Factorized Topic Modeling

5.3 QUAK: Quasi-Anomalous Knowledge for Anomaly Detection
5.4 Simple Supervised learning with LSTM layers

11
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16
19
24

29
33
38
42
46

51
o1

95
60
63
68

71
71
7
81
85
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A spectrum

ML-based

Anomaly detection

General Search Standard Model

s this the goal? / MUSIC Bump Hunts EFT Higgs
Model Model
Independent Dependent

s a fully model-independent approach our goal?
e \What does that even mean?
e |sitthe right goal? Is it a reasonable goal?

e How do we connect back to theory?



- There is also an incorrect way to practice science which leads to

alchemy: collect data, find patterns magically, forget theory, repeat

David Dean’s keynote this morning



The spectrum revisited
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The spectrum revisited
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The spectrum revisited

Unregularized General Search . Hunt EET Standa.rd Model
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Model | Model

Ind dent D
neependen Anomaly detection with ependent

Regularized ML

Regularized ML allow us to specity “alternate hypothesis" in a language other than QFT
that captures intuitive physics. Munch more should be done here!



The spectrum revisited

Unregularized General Search . Hunt EET Standa.rd Model
Anomaly detection / "MUSiC" ump Hunts Higgs

Model | ‘ Model
Ind dent D
neependen Anomaly detection with RECAST ependent

Regularized ML

Regularized ML allow us to specity “alternate hypothesis" in a language other than QFT
that captures intuitive physics. Munch more should be done here!

RECAST allows us to interpret results and connect back to theory

(Reinterpretation of anomaly detection analyses is subtle and computationally expensive)



The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,

Develop or reading. Think of
General Theories Interesting
G | theori tb -
consistent with most or all Questions
available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...



443. Speeding up mplt ude analysis with a Computer Algebra System
2 de Boer, Remco (Ruhr University Boch

Closing the loop: Hypothesis generation

Conceivable that we could use LLMs + multimodal generative Al to write UFO /
QRules tiles and explore space of theories based on features ot an anomaly
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443. Speeding up amplltude analysis with a Computer Algebra System
2 de Boer, Remco (Ruhr University Boch

Closing the loop: Hypothesis generation

Conceivable that we could use LLMs + multimodal generative Al to write UFO /
QRules tiles and explore space of theories based on features ot an anomaly

Simulate & perform analysis

ﬂwronm ent
Compare features
of simulated and
Rew
observed data ar
ter

Interpre

% \,:,J

updated knowledge

Write file with
theory specitication

Action

based on analyzing data Agent



Trigger & DAQ



Al/ML for trigger & DAQ

Al/ML tor trigger & DAQ deserves a dedicated talk

e |argely skipping due to time

Major opportunities:

e [ow-level anomaly detection to tlag weird things that we might not trigger
* Real-time learning to adapt to run conditions

e New approaches to data compression

e |earn data distribution for what we do not trigger

e Assistant / automation for shifters, operations, data quality



Unitying Simulation and Inference






Simulating particle physics processes
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Simulating particle physics processes

Parton-level Theory
momenta parameters
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Simulating particle physics processes

MC Truth / Latent variables

Detector Shower Parton-level Theory
Interactions splittings momenta parameters

e E| 2 trON

e Charged Hadron {e.g. Pion)

— — — - Neutral Hadron {e.g. Neutron)
= = = Photon
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Evolution
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Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters
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Evolution



Simulating particle physics processes

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

r — 2y — 2 — Z;, —

Sample from plzlz4) p(2al2s) p(2s2) p(2p16)

MADGRAPHS _aMCO@ENLDO

X X
X X X X
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Prediction (simulation)



Simulating particle physics processes

Detector Shower Parton-level Theory
Observables . . e
Interactions splittings momenta parameters
T Rg —— 2y — Z;, —— ()
pal6) = [z [z, [az, plalz p(zal2,) Pzl p(z16)

—
Inference



Simulating particle physics processes

MC Truth / Latent variables

Detector Shower Parton-level Theory

Observables . . L
Interactions splittings momenta parameters

2 —— 2y — 2 — )

p(x|f) = /dzd/sz/dzp p(x|zq) p(z4|zs) p(2s|2p) p(2p|0)

It's infeasible to calculate the
integral over this enormous space!

Inference
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"The underlying physical laws necessary
for the mathematical theory of a large part
ot physics and the whole of chemistry are
thus completely known, and the difficulty
is only that the exact application of
these laws leads to equations much too
complicated to be soluble.”

—-PAUL DIRAC



ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.

SR N M e o PRI Sy

Probabilistic models defined only via the simulations thy ’produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop’s aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in phyS|cs to generate particle simulations for high energy processes.

Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop s focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.
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Simulation Machine Learning Inference

arXiv:1506.02169
arXiv:1805.12244
arXiv:1805.00013
arXiv:1805.00020
arXiv:1808.00973
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\\\ ; physics.aps.org/articles/v11/90
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The NN is a surrogate for the likelihood (ratio) or posterior, which is used for inference

Expert knowledge in simulator is transferred to surrogate via the learning process


https://physics.aps.org/articles/v11/90

What do we gain?

Massive gains in precision of a flagship measurement at the LHC !

Equivalent increasing data collected by LHC by several factors
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Simulation Machine Learning Inference

MadMiner: Machine learning-based inference for particle
physics

By Johann Brehmer, Felix Kling, Irina Espejo, and Kyle Cranmer

pypi package [0.6.3 || build 'passing § docs failing | chat on gitter § code style black m DOI 10.5281/zenodo.1489147
arXiv 1907.10621

. Introduction

F Particle physics processes are usually modeled with complex Monte-Carlo simulations of the hard process, parton

’ shower, and detector interactions. These simulators typically do not admit a tractable likelihood function: given a
(potentially high-dimensional) set of observables, it is usually not possible to calculate the probability of these
observables for some model parameters. Particle physicisists usually tackle this problem of "likelihood-free inference" by

»
nd filling histoarams of them. But th onyentiona

Dedicated software package interfacing with particle physics simulators:
github.com/johannbrehmer/madminer

[J. Brehmer, F. Kling, I. Espejo, K. Cranmer 1907.10621]
See also LHC EFT WG Report arXiv:2211.08353
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https://arxiv.org/abs/2211.08353
http://github.com/johannbrehmer/madminer
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https://arxiv.org/abs/2211.08353
http://github.com/johannbrehmer/madminer

. ) . Cranmer, Louppe, Pavez, arXiv:1506.02169

s it radically difterent? PNAS, arXiv:1805.12244
PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
NeurlPS, arXiv:1808.009/3
physics.aps.org/articles/v11/90
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Simulation | ~ Machine Learning | | Inference
Allows us to work with low-level / "raw” data without summaries designed by experts

It is radical in the sense that the human role is different from traditional HEP analysis.

But, not any more radical than use ot Al/ML for signal vs. background classitiers.

Interpretability requires new strategies and attitudes.


https://physics.aps.org/articles/v11/90

Two approaches simulation-based inference

Learn simulator Control simulator
(with deep learning) (much more efticiently)

conv (180w + 5b)

om m
! ——M
/ non-llnear‘ —— Electron
arged Hadron (e.g. Pion)

maxpool  ¢ony (450w + 10b) ¢ ,= 0 -
/ non-linear 0 ¢
b | @ =
=n @ =0
p ¢ - 0
. maxpool O T @ g
non-linear (. (8
fully-connected '@ == @ A
(1600w + 10b) e
* |Learn a NN surrogate * Probabilistic programming
e avoid complexity ot MC truth / e Maintain ability to infer latent
latent variables in simulation variables, but have to cope with that

complexity


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

simulate | etalumis

= A
n
rrrrrrr

grsc RO

NYU BERKELEY LAB

Probabilistic Programming: Use Generative Al to control the random numbers in
the simulator to efticiently generate an output that matches the observed data.

NN

probprog/pyprob

"+ PPX /7

simulator C++

Pythia / Sherpa / GEANT / ...

Observation

14
12 ]
10 |

o N B~ O

Mean Simulated Observation

Augment simulator so it can be

controlled by external Al "guide”
(C++, >1M lines of code)

Use Generative Al technigues to
control the internal randomness

Radically difterent use of the simulator
Still computationally expensive

Enables "deep interpretability” &
Bayesian Inference

Preserves semantics of current
simulation chain

G. Baydin, et al SC19 arXiv:1907.03382
G. Baydin, et al. NeurlPS 2019 arXiv:1807.07706


https://github.com/probprog
https://github.com/probprog/pyprob

Andreassen, Feige, Frye, Schwartz arXiv:1804.09720

G e n e r a t i V e A ‘ fo r j e t S See also Reframing Jet Physics with New Computational Methods

K.C, Drnevich, Macaluso, and Pappadopulo
vCHEP2021 DOI:10.1051/epjconf/202125103059
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x P (end|E™, ... k).
Autoregressive structure matches causal  Can train on real data.

structure in traditional physics simulators

0.08 Could imagine abandoning current parton shower

Pythia ete™— ¢q : : : .
C/A clustering algorithms with a more tlexible data-driven shower.

0.06 -

= JUNIPR cont. prob.
Pythia freq.

Loose interpretability?

probability

0.04 -
Would it extrapolate to different energies?
0.02 -
0.00 e e ———— There is a spectrum connecting Pythia and JUNIPR
0.002  0.01 0.1 0.5

z (all t’s
| atent variables aﬁe iriterpretable Training is conceptually equivalent to MC tuning.


https://doi.org/10.1051/epjconf/202125103059

See more in Kevin's talk & Mode Collaboration

Differentiable Programming

The core of modern Al is gradient-based optimization enabled by automatic
differentiation. Incorporating this into our tools would lead to radical changes.

Optimization by
ient descent

Differentiable Programming in High-Energy Physics

Atihim Giineg Baydin (Oxford), Kyle Cranmer (NYU), Matthew Feickert (UIUC), g ra d

Lindsey Gray (FermiLab), Lukas Heinrich (CERN), Alexander Held (NYU)
Andrew Melo (Vanderbilt) Mark Neubauer (UIUC), Jannicke Pearkes (Stanford),
Nathan Simpson (Lund), Nick Smith (FermiLab), Giordon Stark (UCSC),
Savannah Thais (Princeton), Vassil Vassilev (Princeton), Gordon Watts (U. Washington)

August 31, 2020

Something with HistFactory likelihood CLs
Abstract : h Id '

A key component to the success of deep learning is the use of gradient-based optimization. Deep trainable ’\7 Some other Feldman-Cousins
learning practitioners compose a variety of modules together to build a complex computational pipeline parameters ¢ pa rametric fit Posterior sampling
that may depend on millions or billions of parameters. Differentiating such functions is enabled through . . . . .

y aep . parai - & . s Data-driven likelihood Credible intervals
a computational technique known as automatic differentiation. The success of deep learning has led to an
abstraction known as differentiable programming, which is being promoted to a first-class citizen in ..etc

many programming languages and data analysis frameworks. This often involves replacing some common
non-differentiable operations (eg. binning, sorting) with relaxed, differentiable analogues. The result is
a system that can be optimized from end-to-end using efficient gradient-based optimization algorithms.
A differentiable analysis could be optimized in this way — basic cuts to final fits all taking into account
full systematic errors and automatically analyzed. This Snowmass LOI outlines the potential advantages
and challenges of adopting a differentiable programming paradigm in high-energy physics.

d(inference)
d(¢p)

————
T ————— R
&) Challenge: Auto-diff across systems . . |
& slide from Nathan Simpson: [link to talk]
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https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF5_CompF3_Gordon_Watts-046.pdf
https://www.canva.com/design/DAD4HFY3Ais/3QuLwKzjVlABG9k5vTL1Dw/view#1

Closing the loop: Experimental Design

Scientist trying to decide what experiment to do next

En vironm ent

Rewar
Interpreter
M’ -/

Action

Agent



Closing the loop: Experimental Design

Scientist trying to decide what experiment to do next

Generate synthetic data

ﬂv:ro nment

Estimate sensitivity 4 R
ewar
Interpretﬂ
%’ \G,I::,)J
| of .

oerformance for

Propose an
experimental

Action

configuration

updated mode

Agent

potential experiments



Scientific Understanding



Scientific

Understanding

On scientific understanding with artificial intelligence

Mario

Cervera-Lierta,? ° Pascal Friederich,? > ° Gabriel dos Passos Gomes,* 2 Florian Hase,

Krenn,' %34 * Robert Pollice,? 2 Si Yue Guo,? Matteo Aldeghi,? > % Alba
2,3,4,6

Adrian Jinich,” AkshatKumar Nigam,? 3 Zhenpeng Yao,% %919 and Aldn Aspuru-Guzik? 34 11,1

Imagine an oracle that correctly predicts the outcome of every particle physics experiment, the
products of every chemical reaction, or the function of every protein. Such an oracle would revolu-

tionize science

and technology as we know them. However, as scientists, we would not be satisfied

with the oracle itself. We want more. We want to comprehend how the oracle conceived these

predictions. T

nis feat, denoted as scientific understanding, has frequently been recognized as the

essential aim o:

- science. Now, the ever-growing power of computers and artificial intelligence poses

one ultimate question: How can advanced artificial systems contribute to scientific understanding
or achieve it autonomously?


https://arxiv.org/abs/2204.01467

Computer-Assisted Scientific Understanding

Computational Resource of Agent of
Microscope Inspiration Understanding

Mario Krenn, et. Al. https://arxiv.org/abs/2204.01467


https://arxiv.org/abs/2204.01467

Al tor Lattice Field Theory

Computational
Microscope

Machine learning for QCD

Flows on

compact, Zm

connected ® Provably-exact machine-learning-
manifolds accelerated sampling algorithm

® Orders of magnitude more efficient than
conventional algorithms overcoming
critical slowing-down

® Unbiased results where traditional

o = approaches fail
ermions
+ gauge
theory Deployment for state-of-the-art QCD
gcaling . . AURORA |z
o scheduled for Aurora 2023 first science time

12107.00734; 2101.08176, s.Rev.D 104, 114507; Phys.Rev.D 103, 074504 (2021); Phys.Rev.Lett. 125, 121601;
PMLR 8083-8092 (2020); Phys.Rev.D 100, 034515 (2019); Phys.Rev.D 97, 094506 (2018)]

61 Phiala Shanahan, MIT
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Al 4 Amplitudes

Kyle Cranmer Lance Dixon Garrett Merz Tianji Cai Matthias Wilhelm Francois Charton

Like an NP-complete problem, the answer is hard to find, but easy to verity

Limits & Known Symmetries

h Pni2
"

Planar N=4 Super-Yang-Mills % P2 % “Bootstrapped” Symbol Form of Integrals
Multiple Polylog Integrals

(1

G(ay, az z) = X(az 1) S|F! )]:(—l)[h:;td+ri;:r+a:;.’.f+h:¢:tf+r:;td+a:;:r].

‘iﬂ]:4“;nﬁcdad+r3(x(xr+ng1fyfgf

+bRfRfOf+cRdRdRd+aRe®eR e]

- ‘Zlb AbRbRVd+cRcRecRe+aRkaRaR f

+bRb2b2 f+ec@RecReRd+aRaRa® (‘] .

Some “Words” & Coefficients
for Training

<]
Undiscovered Symmetries
and Recurrences in o
“Symbol Words” Some “Words” & Coefficients
for Validation/Test
<

Q: can we reduce the need for costly
limit computations in the bootstrap?

Cewd. U.S. DEPARTMENT OF Oﬁlce Of

Transformer NLP Model ) ENERGY sciren
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Like an NP-complete problem, the answer is hard to find, but easy to verity

Limits & Known Symmetries
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htips/arxiv.org/abs/2201.04600 Some “Words” & Coefficients

First terms Predicted recurrence < for Traini ng
13 13 23 33 43 63 99 12: 183 27 Up = Un—1 + Unp—-3 — un—l%un—S

1,2, 4,8, 16, 32, 64, 28, 56, 12 Up = (2Upn_1)%100
0,1,1,3,1,3,5,7,1,3 Un = (Un_14+n)%(n—1)—1 Some “Words” & Coefficients
0,1,3,6,0,5,1,8,6,5 Up = (Un_1 +n)%10 for Validation/Test
0,1,1,3,2,5,3,7,4,9 Up = Un_g +1//(Un_1 + 1) >
1,0,1,0,3,2,1,0,7,6 Up = (Up—1 — n)%(n — 1)
1,1,2,1,2,3,4,1,2,3 unp = (%N —up—1)) +1

5-1,-1,-1,-1,9,-7,-1,-1,-1 Un = 2Un—5 — Un—6 SET®.  U.S. DEPARTMENT OF :
— B Transformer NLP Model ) ENERGY 27
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1, 2, 4,8, 16, 32, 64, 28, 56, 12 Up = (2up—1)%100
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Conclusions

Perhaps it is a useful ongoing exercise to think through more radical, speculative changes
e \What might be enabled it we embraced a dramatically ditferent approach?
e \What would we lose?

e How would those changes impact the computational, organizational, and epistemological nature of

the field?

There are many opportunities:
e some are easy, some are hard, some are unnecessarily haro

* some are worth it, some are not

Do they reveal overly rigid assumptions about our approach?

e \We should attempt to be nimble as Al/ML will continue to surprise and disrupt us

o1



