

LHCD Event and data persistency models for the LHCb Real Time Analysis System

LHCb collaboration - RTA project - Presented by Xavier Vilasís Cardona La Salle, Universitat Ramon Llull

LHCb current detector

LHCb-FIGURE-2020-016

LHCb-FIGURE-2020-016

Event Model

C++ classes that represent the data flow from detector raw banks to particles for analysis.

Z

. . .

Z

Z

Z

Requirements

Flexible data structures to accommodate vectorisation, multithreading, task-based algorithms. Should be adapted to Single Instruction Multiple Data **SIMD** framework. Currently used for **HLT2**.

SOA : Struct of Arrays - well suited for SIMD approach Conceptual Layout Struct of Arrays

 ${\mathcal X}$

. . .

 \mathcal{V}

 \mathcal{V}

SOACollections : dynamically-resizable collection of SOA Example : simple track collection

 ${\mathcal X}$

 ${\mathcal X}$

 ${\mathcal X}$

// Define tags: struct Momentum : float_field {}; struct Index : int_field {}; struct LHCbID : lhcbid_field {}; struct Hits : vector_field<struct_field<Index, LHCbID>> {};

// Define collection: struct Tracks : SOACollection <Tracks, Momentum, Hits>{}; Struct of Arrays vs Array of Structs (traditional model)

Mniszewki et al, Int.J.HighPerformanceComputing Applications **35** (2021)

Suports SIMD or scalar backends using Proxies

• one object is a slice in the collection

• a proxy represents a chunk of N objects in the collection

• in case of scalar N is 1

in case of SIMD N is width of SIMD vectors.

Vector

// Push N elements to the end of tracks auto proxy = tracks.emplace_back <simd >(); proxy.field<Momentum>().set(momentum); // Iterate over tracks N elements at a time for (const auto& proxy : tracks.simd()) { auto momentum = proxy.get<Momentum>();

Scalar

// Push 1 element to the end of tracks, possibly masking it // Set the momentum of the track auto proxy = tracks.emplace_back <scalar>(mask); proxy.field<Momentum>().set(momentum);

// Iterate over tracks one at a time for (const auto& proxy : tracks.scalar()) auto momentum = proxy.get<Momentum>();

Connecting SOACollections

Zipping - Same size SOA

У

 ${\mathcal X}$

Z

N.Nolte CERN-THESIS-2020-331

SOARelations

 $D^+ \to K^+ \pi^+ \pi^-$ execution time

 $256\,\mu s$

 $77.1\,\mu s$ $38.8\,\mu s$

ThorParticleCombiner

- Connecting elements in a collection to other information.
- SOARelations are SOACollections representing relations between SOACollections

struct TracksPVsRelWithWeight:

RelationTable2D<Tracks, PVs, Weight>{}; TracksPVsRelWithWeight table {tracks, pvs}; auto proxy = table.emplace_back<simd>(); proxy.set(tracks.indices(), pvs.indices(), weight);

SIMD Wrappers

- Intrinsic for vector operations depending on architecture
- LHCb specific SIMDWrapper developed

// scalar

scalar::float_v min(scalar::float_v lhs, scalar::float_v rhs) { return std::min(lhs.data, rhs.data);

// neon

neon::float_v min(neon::float_v lhs, neon::float_v rhs) { return vminq_f32(lhs, rhs);

// avx

avx::float_v min(avx::float_v lhs, avx::float_v rhs) { return _mm256_min_ps(lhs, rhs);

Summary

Throughput Oriented (ThOr) selections

- Functors designed to be agnostic about Input and Output
- Use of functor cache instead of JIT compi Implementation CombineParticles NBodyDecays
- Significant gain using SIMD instructions

Implementation		$D^+ \rightarrow K^+ \pi^+$	ThOrCombiner Scala ThOrCombiner SSE ThOrCombiner AVX
CombineParticles		956 mg	
ementation	$D^+ \to K^+ \pi^+ \pi^-$ execution time		
bineParticles	$256\mu{ m s}$		
dyDecays	$77.1\mathrm{\mu s}$		
ParticleCombiner	38 8 119		

Example of the Event Model applied to the HLT1

Evolution of the current LHCb HLT1 throughput of a CPU prototype from Dec-2018 to Apr 2020

LHCb-FIGURE-2020-007

