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1 The LHCb upgrade

In the last years, the LHCb detector[1] has been upgraded to run at a five times higher instantaneous
luminosity (L) than during Run 1+2 of the LHC, corresponding to L = 2 · 1033 cm�2s�1. All tracking
detectors and most of the readout electronics of the subdetectors have been replaced[2, 3, 4]. The change in
hardware is also reflected by a change in the trigger strategy: for Run 3, starting in 2022, LHCb will use a
pure software trigger, processing events at the 30 MHz non-empty bunch-crossing rate[5]. The first stage of
the software trigger, HLT1, uses a set of GPU cards to perform a partial event reconstruction[6, 7, 8]. HLT2,
the second stage of the software trigger, employs a farm of CPU servers to fully reconstruct the event with
o✏ine quality and perform an event selection, given an input rate of about 1 MHz and an output data rate
of about 10 GB/s[9, 10].

In order to cope with the high data rate and the throughput requirements, the HLT2 event model was
rewritten to use modern software paradigms such as SIMD (single instruction, multiple data) instructions.
Its di↵erent building blocks and the performance will be explained in the following sections.

2 Introduction to the LHCb event model

The LHCb event model consists of all classes, implemented in C++, that represent the data flow from the
detector raw banks to the charged and neutral particles used for data analysis. It is used to pass information
between the algorithms in the reconstruction chain and to consistently write and read information from and
to files. In Run 1+2 of the LHC, the LHCb event model used so-called “keyed containers” where every object
in a container is identified by a key. These containers were implemented as array of structures (AOS) leading
to slow data access in parallel-processing environments. Additionally, the keyed containers held pointers to
objects they contained, making memory allocation and de-allocation slow.

For Run 3 of the LHC, the pure software trigger of LHCb required a redesign of the event model to reach
the desired throughput. The new model stores the data in an Struct-of-Arrays (SOA) layout to be able to
take advantage of SIMD (single input, multiple data) instructions on CPUs. The memory layout of AOS
and SOA structures can be seen in Fig. 1.

Figure 1: A comparison of AOS and SOA layouts. Taken from Ref. [11].

While developing the new event model, several key points for the event reconstruction, but also for the
analysis of particle decays, have been taken into account. They include having flexible data structures that
can be grown and shrunk at run time using dynamic memory allocation, but also the possibility of traversing
decay trees for the analysis of multi-staged particle decays. In order to reach a high computational speed,
the model needs to allow easy vectorisation[12, 13, 14, 15]. At the same time, the new model needs to be
compatible with the old event model also during the development phase to not break the workflow of the
full reconstruction sequence and for quality assurance.
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SOACollections : dynamically-resizable collection of SOA

   Example : simple track collection


Connecting the Dots. May 31 - June 2, 2022

3 SOA collections

An SOA collection is a dynamically-resizeable collection of arrays in an SOA layout. Each array or field is
represented by a tag which carries all the information about the field: its type, its packed representation for
o✏ine storage, etc... For example, a simple track∗ collection can be created with:

// Define tags:
struct Momentum : float_field {};
struct Index : int_field {};
struct LHCbID : lhcbid_field {};
struct Hits : vector_field<struct_field<Index, LHCbID>> {};

// Define collection:
struct Tracks :

SOACollection <Tracks, Momentum, Hits>{};

with Momentum the absolute momentum of the track, LHCbID a unique identifier for a charged cluster on
a track, Index the index of the LHCbID on the track and Hits a class representing the collection of charged
clusters on the track. The design goal of SOA collections is to provide a user friendly structure, replacing
an AOS structure such as std::vector<Track>, that allows for e�cient vectorization.

Access to the individual tags is provided via proxies, where the specific SIMD† or scalar backends can
be chosen at compile time, with an automated detection of the largest vector width available on the specific
architecture. A proxy therefore represents a chunk of N objects in the collection where one object, e.g. a
track, is a slice through the collection.

Elements to the collection can be easily added to the end, similarly to a std::vector, with the possibility
of masking some elements, i.e. not actually adding them. This allows for selecting some objects while
discarding others in parallel, e.g. when applying track quality or momentum requirements.

// Push N elements to the end of tracks, masking some
// Set the momentum of the track
auto proxy = tracks.emplace_back <simd>(mask);
proxy.field<Momentum>().set(momentum);

// Iterate over tracks N elements at a time
for (const auto& proxy : tracks.simd())

auto momentum = proxy.get<Momentum>();

The same operations in scalar:

// Push 1 element to the end of tracks, possibly masking it
// Set the momentum of the track
auto proxy = tracks.emplace_back <scalar>(mask);
proxy.field<Momentum>().set(momentum);

// Iterate over tracks one at a time
for (const auto& proxy : tracks.scalar())

auto momentum = proxy.get<Momentum>();

∗A track represents the trajectory of a charged particle.
†SIMD is used in the following for all architectures which provide a vector width larger than 1.
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Suports SIMD or scalar backends using Proxies

•one object is a slice in the collection


•a proxy represents a chunk of N objects in the collection


• in case of scalar N is 1


• in case of SIMD N is width of SIMD vectors. 
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SOA Collections: reading and writing
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Supports any SIMD or scalar backends through the use of proxies

∆ one object is a slice in the collection

∆ a proxy represents a chunk of N objects in the collection

∆ in case of scalar N is 1.

∆ in case of simd N is width of simd vectors.

// Push N elements to the end of tracks

auto proxy = tracks.emplace_back <simd >();
proxy.field<Momentum>().set(momentum);
// Iterate over tracks N elements at a time

for (const auto& proxy : tracks.simd()) {
auto momentum = proxy.get<Momentum>();

Same operation in scalar:

// Iterate over tracks one at a time

for (const auto& proxy : tracks.scalar()) {
auto momentum = proxy.get<Momentum>();
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Connecting SOACollections
Zipping - Same size SOA
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4 Connecting SOA Collections

4.1 Zipping

In the transient event store (TES)[16], which is used to pass objects from one algorithm to the next, data
objects need to be constant to allow safe memory allocation for multi-threading. However during the event
reconstruction, more information can become available for some objects which are already in the TES. For
example, after tracks are reconstructed, particle identification (PID) algorithms are executed, providing
additional information for these tracks. Instead of making a copy of the objects in the TES, two methods
can be used to connect the new information to the original object. The first is using ‘zipping’, which is
similar to python zip(). A zip is a set of SOA collections of the same size that can be iterated as one and
carries the information on how to iterate and access the collection, i.e. the actual SIMD backend and the
proxy behaviour. An example of a possible zip between tracks and PID information can be seen in Fig. 2.
Zips only keep pointers to existing containers and do not own any memory. An (example) zip with tracks
and PIDs can be created with and iterated over with:

auto zipped = make_zip<simd>(tracks, PIDs);
for (const auto& zipproxy : zipped).simd() {

auto momentum = zipproxy.get<Momentum>(); // from tracks
auto pid = zipproxy.get<pid>(); // from PIDs

}

The fact that the code for looping over an SOACollection or a zip of SOACollections is identical leads to
increased code flexibility.

Figure 2: An example zip combining track, particle ID and RICH PID to a charged particle. Taken from
Ref. [17].

4.2 Relation tables

Zipping only works if both SOA collections have the same size and there exists a one-to-one correspondence
between the individual entries in the SOA collections. However, there are situations where this is not the
case, i.e. two tracks could both point to the same calorimeter cluster.

The second method to add information to an existing object are therefore ‘relations’. Relations connect
elements in a collection to something else, which can be another collection. An additional weight information
can be added to each relation. SOA Relations are SOA Collections representing relations between two SOA
Collections. For example a relation can be used between particles and their primary vertices with:
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other information. 

• SOARelations are SOACollections 
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struct TracksPVsRelWithWeight:
RelationTable2D<Tracks, PVs, Weight>{};

TracksPVsRelWithWeight table {tracks, pvs};
auto proxy = table.emplace_back<simd>();
proxy.set(tracks.indices(), pvs.indices(), weight);

5 SIMD Wrappers

The e�cient use of SIMD instructions relies on using “intrinsics” for vector operations, which depend on
the architecture and instruction set used (x86, ARM; SSE, AVX). In order to allow for a consistent use of
vector operations, an easy switching between the backends and a more familiar look-and-feel similar to the
scalar instructions formerly used in the LHCb code, wrapper classes for commonly used intrinsics, called
SIMDWrapper were introduced at LHCb[18]. The instruction set is fixed at compile time, by selecting an
architecture using compiler flags and target, to allow the compiler to do more optimizations. Given that
changing the architecture during runtime is unlikely, this limitation does not have a negative impact for the
LHCb software. The wrapper is fully integrated into the LHCb software and templated when possible to
have only one implementation for all backends. Also common math functions and matrix operations are
defined for all architectures to allow easy switching from one to another. An example for the function to
find the minimum is given below:

// scalar
scalar::float_v min( scalar::float_v lhs, scalar::float_v rhs ) {

return std::min( lhs.data, rhs.data );
}
// neon
neon::float_v min( neon::float_v lhs, neon::float_v rhs ) {

return vminq_f32( lhs, rhs );
}
// avx
avx::float_v min( avx::float_v lhs, avx::float_v rhs ) {

return _mm256_min_ps( lhs, rhs );
}

with scalar::float v a float with vector width one, neon::float v a float on the ARM architecture,
vminq f32 the function to find the minimum between two ARM float numbers, avx::float v a float in the
AVX instruction set and mm256 min ps the function to find the minimum between two AVX float numbers.

6 Throughput Oriented (ThOr) selections

In Run 2, the event reconstruction at LHCb was about 70% and the selections were about 30% of the time
spent in HLT2. This is expected to be similar in Run 3. Currently, more than 1000 exclusive HLT2 lines
are being tested, each performing selections (cuts, vertex fitting, combinations etc...) on basic particles. In
order to benefit from the speed improvement provided by SIMD instructions and the usage of SOA collections
also in selections, a new framework was developed simultaneously for the old and the new SOA-based event
models.

In order to select interesting decays in trigger lines, functors (i.e. function objects) are used. The so-called
Throughput Oriented (ThOr) functors, are designed to be agnostic about the input and output type to be
flexible on what they operate on. A significant gain in speed is achieved when using SIMD instructions on
SOA containers compared to the old implementation as seen in Table 1. Additional speed is gained by using
a functor cache instead of Just-In-Time compilation: This means that functors, which are defined in python,
are compiled into a cache during the build process to be then used directly in the application without further
interpretation. To simplify user experience, functors are templated and are using SIMDwrappers, so the
code is the same for every architecture and no specialization is needed at the functor level.
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Throughput Oriented (ThOr) selections

• Functors designed to be agnostic about Input and Output

• Use of functor cache instead of JIT compilation

• Significant gain using SIMD instructions


Throughput Oriented (ThOr) selections
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Simultaneously developed for old and new event model

∆ Significant gain when using SOA

Using functor cache instead of JIT compilation

∆ functors that are defined in python during build ∆ compiled into a cache in
compile time to be used natively in the application.
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Summary

Example of the Event Model applied to the HLT1


Evolution of the current LHCb HLT1 throughput of a CPU prototype from Dec-2018 to Apr 2020 
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e↵ort on all three points, the throughput could be improved by about a factor 4, without compromising the
reconstruction of physics quantities.

9 Conclusions

For Run 3 of the LHC, the LHCb collaboration implemented a new event model for the second stage of the
software trigger, HLT2, using an SOA layout, native usage of SIMD instructions and more flexibility. This
results in an increased throughput and allows to run more than 1000 trigger lines with a full o✏ine-quality
reconstruction, without the need for any post-processing. This event model therefore is well suited for the
coming decade of data taking of the LHCb experiment.

Figure 3: Evolution of the upgrade LHCb HLT1 throughput of the CPU prototype between December 2018
and April 2020. The period between August 2019 and February 2020 has been cut out as there were little
changes to the throughput. More details about the indicated optimizations can be found in Ref. [20].
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Persistency

• Filter and select what needs to be persisted

• Create persistent representations

• SOACollections are already in persistent representations
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Table 1: A benchmark comparing the timing of the reconstruction of a D+ ! K+⇡+⇡� particle decay,
using di↵erent algorithms to perform the particle combination. CombineParticles and NBodyDecays use the
legacy framework from Run 1+2; ThOrParticleCombiner uses functors, but still the old data structures;
ThOrCombiner uses SOA structures with di↵erent vector widths. Taken from Ref. [17].

7 Persistency

The final step of the event reconstruction and the selection of candidates is the persistency of the data
for future use. In the AOS event model, this is done in two steps: filtering what needs to be persisted
and creating persistent representations i.e., conveying the data to more basic data structures. The SOA
collections are already mostly in a format that is ready to be persisted so the second step is simpler. While
creating the collection, each tag can be customized for how and if it is persisted and versioning can be
introduced. For the example below, one field is defined to be packed as float, one field is not to be persisted
at all, and one field is to be persisted only for the newest versions of the collection.

// Define tags :
struct Momentum : float_field {
using packer_t = SOAPackFloatAs <short,

std::ratio<1, 100 > >;
};
struct Unwanted : int_field {

using packer_t = SOADontPack ;
};
struct OopsIForgotThisField : int_field {
using packer_t =

SOAPackIfVersionNewerOrEqual<1, SOAPackNumeric <int>>;
};
// Define collection :
struct Tracks : SOACollection<Tracks,Momentum,

Unwanted, OopsIForgotThisField> {};

8 Throughput improvements in the HLT1 prototype sequence

A prototype for the HLT1 trigger was implemented on CPU in parallel to the GPU prototype[19]. It
featured most of the improvements explained in these proceedings, most importantly the SOA Collection
and a widespread use of SIMD instructions. The HLT2 trigger uses same event model as the HLT1 and
benefits from the same improvements mentioned in these proceedings.

In order to test the impact of using SIMD instructions compared to scalar instructions, the sequence was
once run with the AVX2 instruction set, and once with scalar instructions, while keeping the event model
the same. The throughput was about twice when using vector instructions compared to scalar instructions.

A historical overview over the improvements achieved using the new event model, using SIMD instructions
and having improved reconstruction algorithms can be seen in Fig. 3. It shows that thanks to a concentrated

5

Connecting the Dots. May 31 - June 2, 2022

Table 1: A benchmark comparing the timing of the reconstruction of a D+ ! K+⇡+⇡� particle decay,
using di↵erent algorithms to perform the particle combination. CombineParticles and NBodyDecays use the
legacy framework from Run 1+2; ThOrParticleCombiner uses functors, but still the old data structures;
ThOrCombiner uses SOA structures with di↵erent vector widths. Taken from Ref. [17].

7 Persistency

The final step of the event reconstruction and the selection of candidates is the persistency of the data
for future use. In the AOS event model, this is done in two steps: filtering what needs to be persisted
and creating persistent representations i.e., conveying the data to more basic data structures. The SOA
collections are already mostly in a format that is ready to be persisted so the second step is simpler. While
creating the collection, each tag can be customized for how and if it is persisted and versioning can be
introduced. For the example below, one field is defined to be packed as float, one field is not to be persisted
at all, and one field is to be persisted only for the newest versions of the collection.

// Define tags :
struct Momentum : float_field {
using packer_t = SOAPackFloatAs <short,

std::ratio<1, 100 > >;
};
struct Unwanted : int_field {

using packer_t = SOADontPack ;
};
struct OopsIForgotThisField : int_field {
using packer_t =

SOAPackIfVersionNewerOrEqual<1, SOAPackNumeric <int>>;
};
// Define collection :
struct Tracks : SOACollection<Tracks,Momentum,

Unwanted, OopsIForgotThisField> {};

8 Throughput improvements in the HLT1 prototype sequence

A prototype for the HLT1 trigger was implemented on CPU in parallel to the GPU prototype[19]. It
featured most of the improvements explained in these proceedings, most importantly the SOA Collection
and a widespread use of SIMD instructions. The HLT2 trigger uses same event model as the HLT1 and
benefits from the same improvements mentioned in these proceedings.

In order to test the impact of using SIMD instructions compared to scalar instructions, the sequence was
once run with the AVX2 instruction set, and once with scalar instructions, while keeping the event model
the same. The throughput was about twice when using vector instructions compared to scalar instructions.

A historical overview over the improvements achieved using the new event model, using SIMD instructions
and having improved reconstruction algorithms can be seen in Fig. 3. It shows that thanks to a concentrated

5

SOA : Struct of Arrays - well suited for SIMD approach
Conceptual Layout Struct of Arrays

x xxx xy z yyyy zzzz... ...

Requirements 
Flexible data structures to accommodate vectorisation, multithreading, task-based 
algorithms. Should be adapted to Single Instruction Multiple Data SIMD framework. 

Currently used for HLT2.


