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The XENONnT Experiment
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Figure 1. A schematic of the working principle of a dual-phase liquid xenon TPC detector. Credit: [1].

XENONnT (xenonexperiment.org) is an experiment that uses a dual-phase time projection chamber

designed to detect dark matter particles

The detector, as shown in Figure 1, is filled with liquid and gaseous xenon, which interacts with

particles passing through the detector.

Sensor readings and be used to determine the particle type and position of interaction, and are

designed with the intention of identifying dark matter.

The Problem: Broken Sensors

Malfunctioning and deactivated sensors leave gaps in data.

Goal: estimate the number of photons broken sensors would have detected.

Figure 2. Left: Sensor positions in XENONnT. Credit: [4]. Right: Example simulated hit pattern with broken sensors,

with interaction position indicated by black diamond.

Gaps in data increase uncertainty of infered particle type and position of interaction.

Goal: complete the Bayesian Network [6, 3] for position reconstruction from [4] shown in Figure 3

to account for dependencies between sensors.

Goal: Allow positional reconstruction algorithms to run without special cases or retraining to

account for broken sensors.

Figure 3. Structure of a Bayesian network for position reconstruction. Credit: [4].

Proposed Solution: Estimate Missing Data

Figure 4. Bivariate Poisson distribution.

Calculating Correlations: Calculate multivariate

Poisson distribution for groups of 7 adjacent

sensors in the top array of sensors.

Bivariate Poisson Distribution: Consider correla-

tions between two sensors using Equation 1, where

k is a number of photons a sensor may have de-
tected and µ is the mean number of photons likely
detected in the range of possible k values. An ex-
ample distribution is shown in Figure 4.

Using the Distribution: Calculate the joint proba-

bility distribution over both interaction position and

the number of photons detected by the sensors to

allow for inference of interaction position.
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Problems Calculating the Distribution:

Factorial overflow occurs at k = 120, problematic as the number of photons detected by a sensor

can be as large as ≈ 410.
Unreasonable storage requirements distribution shape can be as large as 4107, not including the
interaction position dimension.

Strategies for Calculating Multivariate Poisson

Addressing overflow / underflow:

Split up the multivariate calculations into two parts:

First part: univariate Poisson distribution for each sensor
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log-probability: calculating the log-probability distribution decreases the likelihood of underflow

and loss of precision, as the probabilities can be added together instead of multiplied.

Avoid overflow in factorial using Ramanujan’s log-factorial approximation [5]:

x! ≈ x ln(x) − x + ln(x(1 + 4x(1 + 2x)))
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Reducing storage requirements: To lessen the storage required for these calculations, we used the

Python package Zarr [2] This package compresses Numpy arrays in chunks which are only uncom-

pressed when they are to be used.

Initial Results

Figure 5. Left: Probability distribution over interaction position and Right: joint probability distribution over photons

detected by the broken sensors, both for the example simulated hit pattern shown in Figure 2 [Right]. The vertical black

line and black diamond indicate the true values.

Discussion:

Probabilities nearly center around true interaction positions

Distributions that range over 200 flatten, likely underflow

Looking Ahead

Address underflow in large probability distributions

Proper benchmark testing for run-time and space requirements

Improvements depending on benchmark results

Lookup table for common data to improve speed

Potentially further work to optimize Zarr compression
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