Fast Integration of Poisson Distributions for Dead Sensor Marginalization

Zoë Bilodeau ${ }^{1}$, Christina Peters ${ }^{23,}$. Christopher D. Tunnell 3 .4

${ }^{1}$ Skidmore College ${ }^{2}$ Department of Computer and
${ }^{3}$ Department of Physics and Astronomy. Rice University

The XENONnT Experiment

Figure 1. A schematic of the working principle of a dual-phase liquid xenon TPC detector. Credit: [1

- XENONnT (xenonexperiment.org) is an experiment that uses a dual-phase time projection chamber designed to detect dark matter particles
- The detector, as shown in Figure 1, is filled with liquid and gaseous xenon, which interacts with particles passing through the detector.
- Sensor readings and be used to determine the particle type and position of interaction, and are designed with the intention of identifying dark matter.

The Problem: Broken Sensors

- Malfunctioning and deactivated sensors leave gaps in data.
- Goal: estimate the number of photons broken sensors would have detected.

Hits Measured by Sensor [PE]
with interaction position indicated by black diamond.

- Gaps in data increase uncertainty of infered particle type and position of interaction
- Goal: complete the Bayesian Network [6, 3] for position reconstruction from [4] shown in Figure 3 to account for dependencies between sensors,
- Goal: Allow positional reconstruction algorithms to run without special cases or retraining to account for broken sensors.

Figure 3. Structure of a Bayesian network for position reconstruction. Credit: [4].

Proposed Solution: Estimate Missing Data

Figure 4. Bivariate Poisson distribution.

> Calculate multivariate Calculate multivariate
groups of 7 adjacent Poisson distribution for groups of 7 adjacen sensors in the top array of sensors.
> Bivariate Poisson Distribution: Consider correla tions between two sensors using Equation 1 , where k is a number of photons a sensor may have detected and μ is the mean number of photons likely detected in the range of possible k values. An ex ample distribution is shown in Figure 4.
> Using the Distribution: Calculate the joint probability distribution over both interaction position and the number of photons detected by the sensors to allow for inference of interaction position
$P\left(k_{0}, k_{1} \mid \mu_{0}, \mu_{1}, \mu_{0,1}\right)=e^{\left(-\mu_{0}-\mu_{1}-\mu_{0,1}\right)} \frac{\mu_{0} k_{0}}{k_{0}!} \frac{\mu_{1}^{k_{1}}}{k_{1}!} \sum_{k=0}^{\min \left(k_{0}, k_{1}\right)} \frac{k_{1}!}{k!\left(k_{1}-k\right)!} \frac{k_{2}!}{k!\left(k_{2}-k\right)!} k!\left(\frac{\mu_{0,1}}{\mu_{0} \mu_{1}}\right)^{k}$

