
A DNN for CMS track classification and
selection

Leonardo Giannini* on behalf of the CMS collaboration
*UCSD

Introduction

4 main steps repeated in several iterations to ensure the best possible efficiency while keeping low fake rates (see ref. [1])

Different types of seeds by
iteration: starting from
easier seeds and moving
to more complicated seeds

At the end of each iteration
the hits of high purity
tracks are removed from
the following iterations

Compatible hits associated
to the seed, based on
Kalman filter techniques

Track hits fitted outside-in
and inside-out, again using
the Kalman filter

● The track selection is an integral part of the
iterative tracking, as hits coming from high purity
tracks are removed for the subsequent iterations,
thus reducing the combinatorics of the pattern
recognition

● After all the iterations are completed, the tracks
are merged into a single collection. Several types
of track selection can be applied to the final
collection (“high purity”, loose…)

The Track selection Deep Neural Network

The track selection DNN is introduced for Run 3 tracking [2]. Previously a BDT was employed in Run 2 and a parametric selection in Run 1 [1].

Iterative tracking at CMS The importance of the track selection

Input Features

● the track pT, η, φ, and their respective uncertainties δpT, δη, δφ
● px, py, pz, pT for the innermost and outermost state of the track
● the transverse and longitudinal impact parameters, d0, dz, computed

both from the beamspot and from the closest primary vertex, and
their respective uncertainties δd0, δdz

● the track χ2 and number of degrees of freedom
● number of Pixel hits, number of Strip hits
● number of missing hits inside the innermost hit and outside the

outermost hit
● number of inactive layers crossed inside the innermost hit and outside

the outermost hit
● number of layers without hits overall
● the iteration flag (integer)

Target

● true/false flag: a true track must have more than 75% of its hits
matched to a simulated track.

● Training performed on tracks, including those
from pileup vertices, from several simulated
samples generated at a center-of-mass
energy of 14 TeV with pileup 20 to 70 (QCD,
tt̅, Z to electrons, long lived stop-antistop)

● Training in one step: no track selection on
previous iterations, but all tracks labeled as
“high purity” with consequent hit masking

● Batch size 512, Adam optimizer [4]
● 5 training epochs over 1.3B tracks
● Software package: keras + tensorflow [5,6]

DNN inputs/target DNN architecture
INPUTS (29) ITERATION (1)

Sanitizer (29) One hot encoder (25)

Dense (256)

Dense (128)

Dense (64)

Dense (32)

Dense (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Out (1)

● Simple feed-forward network
● Sanitizer: abs /log transformation if

useful
● One hot encoded: iteration algo

becomes a 0/1 in a vector
● Activations:

○ Exponential Linear Unit [3] in
hidden layers

○ sigmoid for output
● Loss function: binary cross-entropy

Training Procedure

● The working point are chosen iteration by
iteration in a validation sample similar to the
training one - the efficiency is set to match the
Run 2 BDT efficiency

● The choice of the working point is validated in
tracking with the hit masking applied

Choice of working points

Physics Performance

The mkFit algorithm [7,8] was introduced for a subset of the tracking
iterations, replacing the legacy CKF algorithm, at the same time as the DNN

Efficiency and Fake rate in top pair production vs pT, η, PU Efficiency and Fake rate in long lived
stop-antistop production vs displacement

The tracking
efficiency is
consistent or
slightly better,
when comparing
the DNN to the
Run 2 BDT

The tracking fake
rate is overall
lower. Most
notably in the high
and low pT range,
in the barrel and
encap (|η|<1 or
|η|>2) and at
higher PU values

Timing

The evaluation time of the DNN is compared to the one of
the Run 2 BDT. A slight speed up is observed with batch
size 1, and a larger one with larger batches. A batch size
of 16 is chosen for memory footprint constraints.

1. The DNN is trained for both mkFit and the legacy CKF and used based on the iteration
2. We compare the performance of the DNN on the current default tracking, including mkFit, to the Run

2 BDT applied on the same tracks

Summary

CMS improved the track selection by means of a simple
feed-forward DNN

The DNN leverages a larger training dataset and improves the
efficiency and fake rate with respect to the previous BDT
selection

The evaluation time is also faster, thus slightly reducing the total
tracking time.

The duplicate rate
is about 20% higher
(see ref. [2]), due to
the merging of tracks
selected by different
DNNs trained on
mkFit or legacy CKF
reconstruction

Method % of the total tracking time

BDT 4.9

DNN - batch size 1 3.4

DNN - batch size 16 0.9

Bibliography
1. Description and performance of track and primary-vertex reconstruction with the CMS tracker, CMS

Collaboration, e-Print: 1405.6569 [physics.ins-det], DOI: 10.1088/1748-0221/9/10/P10009, Published in: JINST 9
(2014) 10, P10009

2. Performance of the track selection DNN in Run 3, CMS-DP-23/009, CMS Collaboration
3. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUS), Djork-Arne Clevert, Thomas

Unterthiner & Sepp Hochreiter, e-Print: 1511.07289 [cs.LG]
4. Adam: A Method for Stochastic Optimization, Diederik P. Kingma, Jimmy Lei Ba, e-Print: 1412.6980 [cs.LG]
5. https://keras.io. F. Chollet et al., Keras, Software available from https://github.com/keras-team/keras
6. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems M. Abadi et al.,

Software available from tensorflow.org, e-Print: 1603.04467 [cs.DC]
7. Speeding up particle track reconstruction using a parallel Kalman filter algorithm, Steven Lantz (Cornell U.),

Kevin McDermott (Cornell U.), Michael Reid (Cornell U.), Daniel Riley (Cornell U.), Peter Wittich (Cornell U.) et al.,
e-Print: 2006.00071 [physics.ins-det], DOI: 10.1088/1748-0221/15/09/P09030, Published in: JINST 15 (2020) 09,
P09030

8. Performance of Run 3 track reconstruction with the mkFit algorithm, CMS-DP-22/018, CMS Collaboration

Contact - leonardo.giannini@cern.ch

Fitting Track
selection

Pattern
recognitionTrack seeding

https://inspirehep.net/literature/1298029
https://cds.cern.ch/record/2854696
https://arxiv.org/pdf/1511.07289v5.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://keras.io
https://arxiv.org/abs/1603.04467
https://inspirehep.net/literature/1798734
http://cdsweb.cern.ch/record/2814000?ln=en

