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Introduction

4 main steps repeated in several iterations to ensure the best possible efficiency while keeping low fake rates (see ref. [1])

Different types of seeds by 
iteration: starting from 
easier seeds and moving 
to more complicated seeds 

At the end of each iteration 
the hits of high purity 
tracks are removed from 
the following iterations 

Compatible hits associated 
to the seed, based on 
Kalman filter techniques

Track hits fitted outside-in 
and inside-out, again using 
the Kalman filter

● The track selection is an integral part of the 
iterative tracking, as hits coming from high purity 
tracks are removed for the subsequent iterations, 
thus reducing the combinatorics of the pattern 
recognition

● After all the iterations are completed, the tracks 
are merged into a single collection. Several types 
of track selection can be applied to the final 
collection (“high purity”, loose…)

The Track selection Deep Neural Network

The track selection DNN is introduced for Run 3 tracking [2]. Previously a BDT was employed in Run 2 and a parametric selection in Run 1 [1].

Iterative tracking at CMS The importance of the track selection

Input Features

● the track pT, η, φ,  and their respective uncertainties δpT, δη, δφ
● px, py, pz, pT for the innermost and outermost state of the track
● the transverse and longitudinal impact parameters, d0, dz, computed 

both from the beamspot and from the closest primary vertex,  and 
their respective uncertainties δd0, δdz

● the track χ2 and number of degrees of freedom 
● number of Pixel hits, number of Strip hits 
● number of missing hits inside the innermost hit and outside the 

outermost hit 
● number of inactive layers crossed inside the innermost hit and outside 

the outermost hit 
● number of layers without hits overall
● the iteration flag (integer)

Target

● true/false flag: a true track must have more than 75% of its hits 
matched to a simulated track.

● Training performed on tracks, including those 
from pileup vertices, from several simulated 
samples generated at a center-of-mass 
energy of 14 TeV with pileup 20 to 70 (QCD, 
tt̅, Z to electrons, long lived stop-antistop)

● Training in one step: no track selection on 
previous iterations, but all tracks labeled as 
“high purity” with consequent hit masking

● Batch size 512, Adam optimizer [4]
● 5 training epochs over 1.3B tracks 
● Software package: keras + tensorflow [5,6]

DNN inputs/target DNN architecture 
INPUTS (29) ITERATION (1)

Sanitizer (29) One hot encoder (25)

Dense (256)

Dense (128)

Dense (64)

Dense (32)

Dense (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Add (32)

Dense (32)

Dense (32)

Dense (32)

Out (1)

● Simple feed-forward network
● Sanitizer: abs /log transformation if 

useful 
● One hot encoded: iteration algo 

becomes a 0/1 in a vector 
● Activations: 

○ Exponential Linear Unit [3] in 
hidden layers

○ sigmoid for output 
● Loss function: binary cross-entropy

Training Procedure 

● The working point are chosen iteration by 
iteration in a validation sample similar to the 
training one - the efficiency is set to match the 
Run 2 BDT efficiency

● The choice of the working point is validated in 
tracking with the hit masking applied

Choice of working points

Physics Performance

The mkFit algorithm [7,8] was introduced for a subset of the tracking 
iterations, replacing the legacy CKF algorithm, at the same time as the DNN 

Efficiency and Fake rate in top pair production vs pT, η, PU Efficiency and Fake rate in long lived 
stop-antistop production vs displacement

The tracking 
efficiency is 
consistent or 
slightly better, 
when comparing 
the DNN to the 
Run 2 BDT

The tracking fake 
rate is overall 
lower. Most 
notably in the high 
and low pT range, 
in the barrel and 
encap (|η|<1 or 
|η|>2 ) and at 
higher PU values

Timing

The evaluation time of the DNN is compared to the one of 
the Run 2 BDT. A slight speed up is observed with batch 
size 1, and a larger one with larger batches. A batch size 
of 16 is chosen for memory footprint constraints.

1. The DNN is trained for both mkFit and the legacy CKF and used based on the iteration
2. We compare the performance of the DNN on the current default tracking, including mkFit, to the Run 

2 BDT applied on the same tracks

Summary

CMS improved the track selection by means of a simple 
feed-forward DNN

The DNN leverages a larger training dataset and improves the 
efficiency and fake rate with respect to the previous BDT 
selection

The evaluation time is also faster, thus slightly reducing the total 
tracking time. 

The duplicate rate 
is about 20% higher 
(see ref. [2]), due to 
the merging of tracks 
selected by different 
DNNs trained on 
mkFit or legacy CKF 
reconstruction

Method % of the total tracking time

BDT 4.9

DNN - batch size 1 3.4

DNN - batch size 16 0.9
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