

What Machine Learning Can Do for Focusing Aerogel Detectors (FARICH)

F.Shipilov¹, A.Barnyakov^{2,3}, V.Bobrovnikov², S.Kononov^{2,4}, <u>F.Ratnikov¹</u>

¹HSE University, Moscow, Russia

²Budker Institute of Nuclear Physics of Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia ³Novosibirsk State Technical University, Novosibirsk, Russia

⁴Novosibirsk State University, Novosibirsk, Russia

Problem: processing data flow from aerogel detector requires handling 10^{12} Hz hit rate. To reduce this number, a fast and lightweight on-line noise filtering algorithm is needed. The off-line reconstruction task should be addressed as well. **Solution:** use Deep Learning tools to classify events / estimate velocity of the particle.

Data sample

• Maximum operating noise intensity 10^6 Hz/mm^2

Noise Filtering

- Not regular matrix structure due to gaps between SiPM
 - project hits (times) to a regular grid
 - 2-channel tensor: hits $\{0,1\}$ + times $[0;t_{max}]$
- Create a dataset of events with / without signal
 - random translation and time window on signal hits
 - positive event ≥ 10 signal hits

Reconstruction

Stat RECO

- Median: take a median of Cherenkov angle θ_c
- Fit:
 - Compute θ_c for each hit
 - Drop unphysical velocities $\beta = v/c \ge 1$
 - Construct eCDF F_{data}
 - Subtract pure noise CDF F_{noise}
 - Take a numerical derivative and find its peak $\hat{\theta}_c = \arccos(1/n\hat{\beta})$

- 3/7 class ratio
- Train ResNet-18 CNN to perform weighted binary classification with positive class weight parameter
- Use pretrained weights from the reconstruction task to speed up learning process

Event classification metrics:

- Efficiency = $\frac{TP}{TP+FN}$
- Noise Events Reduction = $\frac{FP}{TN+FP}$

ML RECO

- Train ResNet-18 CNN to predict β with MSE objective
- Configurations:
 - **ResNet:** no track prior
 - **ResNet Centered:** center image using track info
 - **ResNet Circular:** project hits to circular conic section, drop unphysical velocities, center
 - **ResNet Fourier:** same as previous with added Fourier features

 θ_c [rad]

Filtering Summary

- ResNet-18 CNN provides a significant level of denoising with high efficiency:
 - Noise Events Reduction ~ 0.1 , Efficiency ≥ 0.95 @ 10^6 Hz/mm² noise
 - Noise Events Reduction ~ 0.01 , Efficiency ≥ 0.97 @ 10^5 Hz/mm² noise
- Positive class weight introduces a trade off between noise reduction and efficiency
- It is possible to achieve even higher noise reduction by performing bounding box regression on signal ellipses for positive events
- Further optimization is needed to ensure real time performance

RECO Summary

- ResNet without track prior is similar to stat models
- ResNet with track prior significantly outperforms stat models by β RMSE
- ResNet is more accurate on hard samples (low β , **p**), where statistical models struggle the most because of random peaks in θ_c

26th International Conference on Computing in High Energy & Nuclear Physics • May 08-12, 2023 • Norfolk, Virginia, USA