

Acceleration beyond lowest order event generation

Parallelisation of event reweighing routines within the MG5aMC framework

Zenny Wettersten (CERN)

Olivier Mattelaer (UCLouvain) Stefan Roiser (CERN) Robert Schöfbeck (HEPHY) Andrea Valassi (CERN)

What if we could forego the overhead?

Zenny Wettersten (CERN)

Reweighing

CMS simulation workflow. (Hildreth; Ivanchenko; Lange, 2017.). Simulation stages factorise, i.e simulated observable F,

$$F(\chi, \upsilon) = X(\chi)Y(\upsilon).$$

If $\chi \to \chi'$ only changes X,

 $F(\chi', \upsilon) = X(\chi')Y(\upsilon) =$ $X(\chi')Y(\upsilon) (X(\chi)/X(\chi))$ $= F(\chi, \upsilon) (X(\chi')/X(\chi)).$

Zenny Wettersten (CERN)

Reweighing

- If new physics doesn't affect later simulation stages: Only need to regenerate events (Note: Very hard condition)
- → Can recycle simulations (Note: Must simulate orig. evt.)
- Furthermore: Event generation factorises, too

Monte Carlo integration

- Solve integrals stochastically (stochastic Riemann integration)
- Given integrand F(x), sample x-space and evaluate F
- Probe x-space until relevant region has been studied sufficiently
- Assign each x_i a weight W_i based on its relevance
- Evaluate integral as

$$\int F(x) \ dx \simeq \sum_i W_i \cdot F(x_i).$$

Event weights

• For MC generation, event weights are (Mattelaer, 2016.)

$$\mathcal{N} = \underbrace{|\mathcal{M}(p)|^2}_{\text{depends on new physics}} \times \underbrace{f_1(x_1, \mu_F) \times f_2(x_2, \mu_F) \times \Omega_{PS}}_{\text{does not depend on new physics}}.$$

- The weight \mathcal{W}' given new physics is then

$$W' = W' imes \left(rac{\left| M(p)
ight|^2}{\left| M(p)
ight|^2}
ight) = W imes \left(rac{\left| M'(p)
ight|^2}{\left| M(p)
ight|^2}
ight)$$

 ${\scriptstyle \bullet}$ \rightarrow Only need to reevaluate the matrix element

Reweighing, technically

- 1. Take a set of generated events (stored in LHE format file)
- 2. Take additionally the original and the new physics parameter sets (stored in SLHA format blocks)
- 3. Generate routines for evaluating MEs
- 4. Evaluate MEs with new physics but original kinematics
- 5. Evaluate and output the new weight from ratio above

Introducing TEAWREX

- C++ library for performing event reweighing
- Event generator agnostic (LHE file format standard)
- ME evaluation tool agnostic (currently implemented with MG)
- Assumes LHE file format and SLHA standard parameter cards
- Takes ME eval. function as input to run reweighing scheme

MG5aMC GPU port implementation

- 1. Port allows ME evaluation on GPUs and vector CPUs
- ^{2.} Build minimal C++ program calling this ME eval. function
- 3. Pass event data parsed from LHE file to eval. function
- 4. Overwrite SLHA parameter card
- 5. Run eval. function for new parameters
- 6. Iterate over steps 3-5 for all considered parameter sets

Status and outlook

- Current situation:
 - Proof of concept sent to CMS for testing
 - Initial results suggest acceleration on par with standalone MEs compared to full event generation in MG GPU port
- Future possibilities:
 - Incorporate TEAWREX and MG code generation
 - Differential studies in HEP parameters, see (Valassi, 2020.)
 - More extensive reweighing process detail options (specific vs. summed helicities, colour flows etc.)

Overarching outlook

- Accelerated reweighing allows for extensive physics probing
- Could make differentiable studies in HEP parameters accessible
- Upstream MG5aMC can reweigh at NLO accuracy
 - We are looking into NLO event generation porting
 - FKS subtraction splits NLO contributions into three parts, two of which can be evaluated using LO machinery
 - $\bullet \rightarrow \mathsf{More} \ \mathsf{heterogeneous} \ \mathsf{computing} ?$
- Parallelism can bring acceleration beyond LO event generation

Backup slides

Zenny Wettersten (CERN)

Hardware statistics

Measurements of proc. $e^+e^-
ightarrow 5\gamma$.

- CPU: Intel Core i7-1165G7
 - Consumer grade CPU
 - 4 physical cores, 8 threads
 - Clock speed 2.80 GHz
- GPU: NVidia A100 40GB
 - HPC grade GPU
 - FP64 performance: 9.7 TFLOPS

Measurements are of total CPU time.

TENSOR CORE	
	SFU
CORE	
CORE	
CORE	
ORE	
CORE	
CORE	
TENSOR COF	

GA100 SM. (Nvidia, 2020.)

Unweighing and reweighing

- For evt. gen., typically want each event to be equally relevant
- Unweighing: Sample phase space s.t. events have same weight
- Still stochastic integral:

$$\int F(x) \ dx \simeq \sum_i W_i \cdot F(x_i),$$

but now $W_i = W_j$ for all i, j.

Atlas proj. CPU usage 2031, aggressive R&D. (CERN-LHCC-2022-005)

NLO contributions in FKS subtraction

- Born contributions: LO tree diagrams Same calculations as LO
- Real contributions: (n + 1)-body diagrams Tree diagrams with 1 additional external particle
- Virtual contributions: LO diagrams with closed internal legs Improper integrals over internal momenta Not yet clear how parallelisable they are

Loop complications

- Evaluate integral with Cauchy's residue theorem
- Integrand splitting method varies dep. integrand
- Sometimes needs quadruple (FP128) precision
- pp collisions: $\sim 40-50\%$ of NLO ev. gen. CPU time

