Porting ATLAS FastCaloSim to GPUs with OpenMP Target Offloading
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Performance compared to CUDA

Abstract

CUDA vs OpenMP Target Offloading APIs

OpenMP is a directive based shared-memory parallel programming cudaMalloc (**devicePointer, size) reset simulate

model traditionally used for multicore CPUs. In its recent versions, devicePointer= omp_target alloc(size, devicelD) 3 3

OpenMP was extended to enable GPU computing via its “target cudaMemcpy (dest, src, count, cudaMemcpyHostToDevice) , | ,

offloading” model. The architecture agnostic compiler directives can in omp_target memcpy (dest, src, count, dest offset, src offset,

principle offload to multiple types of GPUs and FPGAs, and its dst dev id, src dev id) 1 1

compiler support is under active development. cudaFree (devicePointer) I II II II II II II II
We investigate the performance of OpenMP’s GPU offloading omp_target free(devicePointer, devicelD) ] Nvidia A30 Nvidia V100 Nvidia A6000 Nvidia 2080Ti ° Nvidia A30  Nvidia V100 Nvidia A6000 Nvidia 2080Ti
capability by porting the ATLAS FastCaloSim code. FastCaloSim is a #pragma omp target is_device ptr ( devicePointer ) map ( ) M65GeV m1TeV m2TeV =4TeV M65GeV m1TeV m2TeV =4TeV
relatively self-contained parametrized calorimeter simulation, and is #pragma omp teams distribute parallel for num threads(BLOCK SIZE) copy d->h

used as a testbed for our investigations of different portable num_teams(GRID SIZE) reduce 1.2

programming models. We find the OpenMP GPU offloading easy to for (5 ;)4 .

implement and that it does not require major changes to the C++ code.

However, the performance varies from compiler to compiler and the 7fpragma omp atomic Li 1

specialized operations (e.g. atomic) are currently less performant than 0 I II 0.9 I II II

CUDA. We compare the performance with the existing CUDA port f . 0.8 :
across hardware (NVIDIA, AMD) and compilers (LLVM Clang, AMD Nvidia A30  Nvidia V100 Nvidia A6000 Nvidia 2080Ti Nvidia A30  Nvidia V100 Nvidia A600O Nvidia 2080Ti

M65GeV m1TeV m2TeV m4TeV
Clang, gCc, nvc++). Lessons Learned € € = € M65GeV m1TeV m2TeV 1 4TeV
: : Figure 2: Slowdown of various kernels for group simulations using LLVM Clang 15.0.0 for different
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Figure 1: Runtimes of kernels and data copy for 65 GeV using various




