
Porting ATLAS FastCaloSim to GPUs with OpenMP Target Offloading
Mohammad Atif1, Zhihua Dong1, Charles Leggett2, Meifeng Lin1, Tianle Wang1

1Brookhaven National Laboratory, Upton, NY 11973, USA
2Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

https://www.anl.gov/hep-cce

Abstract

OpenMP is a directive based shared-memory parallel programming

model traditionally used for multicore CPUs. In its recent versions,

OpenMP was extended to enable GPU computing via its “target

offloading” model. The architecture agnostic compiler directives can in

principle offload to multiple types of GPUs and FPGAs, and its

compiler support is under active development.

We investigate the performance of OpenMP’s GPU offloading

capability by porting the ATLAS FastCaloSim code. FastCaloSim is a

relatively self-contained parametrized calorimeter simulation, and is

used as a testbed for our investigations of different portable

programming models. We find the OpenMP GPU offloading easy to

implement and that it does not require major changes to the C++ code.

However, the performance varies from compiler to compiler and the

specialized operations (e.g. atomic) are currently less performant than

CUDA. We compare the performance with the existing CUDA port

across hardware (NVIDIA, AMD) and compilers (LLVM Clang, AMD

Clang, gcc, nvc++).

FastCaloSim Overview

Random Numbers
Generate on GPU (cuRAND/ rocRAND)

Generate on CPU, copy to GPU

Load Geometry
Simulate Hits: 3 parallelizable kernels with thread local flops
reset (for loop over ∼ 187, 000 cells)

simulate (for loop over ∼ 5, 000 − 6, 000 hits)

reduce (for loop over ∼ 187, 000 cells)

Copy energy, hit counts from device to host

Figure 1: Runtimes of kernels and data copy for 65 GeV using various

hardware and compilers.

CUDA vs OpenMP Target Offloading APIs

cudaMalloc (**devicePointer, size)

devicePointer= omp target alloc(size, deviceID)

cudaMemcpy (dest, src, count, cudaMemcpyHostToDevice)

omp target memcpy (dest, src, count, dest offset, src offset,

dst dev id, src dev id)

cudaFree (devicePointer)

omp target free(devicePointer, deviceID)

#pragma omp target is device ptr (devicePointer) map ()

#pragma omp teams distribute parallel for num threads(BLOCK SIZE)

num teams(GRID SIZE)

for (; ;) {
...

#pragma omp atomic

...

}

Lessons Learned

Important to tune number of threads per team (block size), default

values did not yield the best performance

Use flags -fopenmp-cuda-mode, -foffload-lto,

-fopenmp-assume-no-thread-state,

-fopenmp-assume-no-nested-parallelism whenever possible

Use OMP TARGET OFFLOAD=mandatory

LLVM Clang’s environment variables LIBOMPTARGET INFO can help

with debugging

LLVM Clang’s optimization remarks such as Rpass=openmp-opt,

-Rpass-analysis=openmp-opt, -Rpass-missed=openmp-opt

offer insights to gain performance

Nsight Systems creates a larger overhead for profiling OpenMP target

offloads

Experiences

Easy to implement, does not require major changes to the C++ code

Performance varies from compiler to compiler

Specialized operations (e.g. atomic) less performant than CUDA

Does not support GPU scan, memset operations

Under active development

Architecture agnostic compiler directives can offload to multiple GPUs,

FPGAs

Performance compared to CUDA

Figure 2: Slowdown of various kernels for group simulations using LLVM Clang 15.0.0 for different

hardware.

Status of Compilers and GPUs for OpenMP Offloading

Future Work

Profiling tools for AMD GPUs (Rocprofiler, omnitrace)

Portable Random Number Generator (Do check out Tianle Wang’s poster)

Investigate performance of Clang-16.0.0 and Intel compiler+GPUs

References

[1] ATLAS Collaboration. The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. No.

ATL-PHYS-PUB-2010-013. ATL-COM-PHYS-2010-838 (2010).

[2] Dong Z, Gray H, Leggett C, Lin M, Pascuzzi VR and Yu K. Porting HEP Parameterized Calorimeter Simulation Code to GPUs. Front. Big Data

4:665783. doi: 10.3389/fdata.2021.665783 (2021).

Work supported by US Department of Energy, Office of Science, Office of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory.

CHEP-2023,
5/8/2023-5/12/2023

