Porting ATLAS FastCaloSim to GPUs with OpenMP Target Offloading

Mohammad Atif', Zhihua Dong!, Charles Leggett®, Meifeng Lin®, Tianle Wang?

'Brookhaven National Laboratory, Upton, NY 11973, USA
Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA

High Energy Physics - Center for

Computational Excellence

https: //www.anl.gov/hep-cce |

Performance compared to CUDA

Abstract

CUDA vs OpenMP Target Offloading APIs

OpenMP is a directive based shared-memory parallel programming cudaMalloc (**devicePointer, size) reset simulate

model traditionally used for multicore CPUs. In its recent versions, devicePointer= omp_target alloc(size, devicelD) 3 3

OpenMP was extended to enable GPU computing via its “target cudaMemcpy (dest, src, count, cudaMemcpyHostToDevice) , | ,

offloading” model. The architecture agnostic compiler directives can in omp_target memcpy (dest, src, count, dest offset, src offset,

principle offload to multiple types of GPUs and FPGAs, and its dst dev id, src dev id) 1 1

compiler support is under active development. cudaFree (devicePointer) I II II II II II II II
We investigate the performance of OpenMP’s GPU offloading omp_target free(devicePointer, devicelD)] Nvidia A30 Nvidia V100 Nvidia A6000 Nvidia 2080Ti ° Nvidia A30 Nvidia V100 Nvidia A6000 Nvidia 2080Ti
capability by porting the ATLAS FastCaloSim code. FastCaloSim is a #pragma omp target is_device ptr (devicePointer) map () M65GeV m1TeV m2TeV =4TeV M65GeV m1TeV m2TeV =4TeV
relatively self-contained parametrized calorimeter simulation, and is #pragma omp teams distribute parallel for num threads(BLOCK SIZE) copy d->h

used as a testbed for our investigations of different portable num_teams(GRID SIZE) reduce 1.2

programming models. We find the OpenMP GPU offloading easy to for (5 ;)4 .

implement and that it does not require major changes to the C++ code.

However, the performance varies from compiler to compiler and the 7fpragma omp atomic Li 1

specialized operations (e.g. atomic) are currently less performant than 0 I II 0.9 I II II

CUDA. We compare the performance with the existing CUDA port f . 0.8 :
across hardware (NVIDIA, AMD) and compilers (LLVM Clang, AMD Nvidia A30 Nvidia V100 Nvidia A6000 Nvidia 2080Ti Nvidia A30 Nvidia V100 Nvidia A600O Nvidia 2080Ti

M65GeV m1TeV m2TeV m4TeV
Clang, gCc, nvc++). Lessons Learned € € = € M65GeV m1TeV m2TeV 1 4TeV
: : Figure 2: Slowdown of various kernels for group simulations using LLVM Clang 15.0.0 for different
FastCaloSim Overview

m Important to tune number of threads per team (block size), default

hardware.

values did not yield the best performance

m Random Numbers Use f] . to —fofflond-1
- —cuda- —-foffload-1t : .
m Generate on GPU (cuRAND/ rocRAND) WS Tlags ~1 OpSHpmCUaamoas, > Status of Compilers and GPUs for OpenMP Offloading
m Generate on CPU, copy to GPU —fopenmp-assume—-no-thread-state,
m Load Geometry -fopenmp-assume-no-nested-parallelism whenever possible Nvidia N
mSimulate Hits: 3 parallelizable kernels with thread local flops m Use OMP _TARGET OFFLOAD=mandatory
mreset (for loop over ~ 187, 000 cells) mLLVM Clang's environment variables LIBOMPTARGET INFO can help Standalone saxpy | FastCaloSim Standalone saxpy | FastCaloSim
m simulate (for loop over ~ 5,000 — 6, 000 hits) with debugging Clang-15.0.0 Working Working Working Working
m reduce (for loop over ~ 187, 000 cells) LLVM Clane’ o y R .
_ _ m ang's optimization remarks such as Rpass=openmp-opt, _ - |
m Copy energy, hit counts from device to host & p. p. s i Working Runtime error
—-Rpass—analysis=openmp-opt, —-Rpass-missed=openmp-opt ‘ _ _ _
o _ GCC-12.2 Working Working Working Working
T offer insights to gain performance
21065 251 5974 m Nsight Systems creates a larger overhead for profiling OpenMP target AOMP-16.0-3 Working Working

—_ 135.68
g 100 offloads
E 32.9 32.99
I Future Work
E
g 5.45
3 271 - m Profiling tools for AMD GPUs (Rocprofiler, omnitrace)
— 1.28
= = Easy to implement, does not require major changes to the (++ code m Portable Random Number Generator (Do check out Tianle Wang's poster)
0.83 0.94 g . .
m Performance varies from compiler to compiler : .
£ Nvidia A30 Nvidia AGOOO Nvidia V100 AMD Mi50 Nvidia 2080Ti o | P | P m Investigate performance of Clang-16.0.0 and Intel compiler+GPUs
0.1 m Specialized operations (e.g. atomic) less performant than CUDA

m Clang 15.0.0 ®m GCC12.2.0 m CUDA 11.4.0 = AOMP 16.0-3 m Does not support GPU scan, memset operations References

m Under active development [1] ATLAS Collaboration. The simulation principle and performance of the ATLAS fast calorimeter simulation FastCaloSim. No.

_ m Architecture agnostic compiler directives can offload to multiple GPUs, ATL-PHYS-PUB-2010-013. ATL-COM-PHYS-2010-838 (2010).
hardware and com p||ers. FPGAs [2] Dong Z, Gray H, Leggett C, Lin M, Pascuzzi VR and Yu K. Porting HEP Parameterized Calorimeter Simulation Code to GPUs. Front. Big Data

4:665783. doi: 10.3389/fdata.2021.665783 (2021).

Work supported by US Department of Energy, Office of Science, Office of High Energy Physics under the High Energy ~ - |
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven BrDth dven 5%55622%23'/12/2023
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. National Laboratory _

Figure 1: Runtimes of kernels and data copy for 65 GeV using various

