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1. Hyperparameter Optimization 2. Performance Prediction using Quantum-SVR
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3. Using Performance Prediction to aid Hyperparameter Optimization
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4. Results

To compare Hyperband, Fast-hyperband, Swift-Hyperband and
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o Both Swift-Hyperband and its version using Q-SVRs achieve accuracies comparable to classical Hyperband while
@ 0-775 7 - 8 needing considerably fewer epochs in all cases. In comparison to Fast-Hyperband, Swift-Hyperband (SVR and Q-
Y Y 3 yp
SVR) is faster in all cases except on the SVHN problem. When it comes to the non-simulated runs we observe that
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Swift-Hyperband beating Fast-Hyperband.

5. Conclusions

— We proposed a new promising parallelizable HPO algorithm integrating Hyperband and performance predictors that can be used in combination with Q-SVRs. This leaves the
door open for the use of Swift-Hyperband in later hyperparameter optimization cycles of MLPF.

— It was shown that, despite the current limitations of quantum computers, it is possible to integrate hybrid Quantum/HPC workflows for HPO.

— There is a need for further studies on the speedup achieved by the parallelization of Swift-Hyperband when using a greater number of nodes.
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