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1. Hyperparameter Optimization
Hyperparameter Optimization
(HPO) can be used to systematically
explore the search space of hyper-
parameter configurations of Deep
Learning (DL) models.

Current state-of-the-art HPO al-
gorithms such as Hyperband [1],
ASHA [2], and BOHB [3], rely on a
method of early termination. Badly
performing trials are automatically
terminated allocating more comput-
ing resources to more promising ones.

Such methods have been successfully applied to optimize MLPF, a particle flow reconstruction
neural network [4]. The validation loss of MLPF was reduced by ∼44% [5].

2. Performance Prediction using Quantum-SVR
Support vector regression (SVR) models can
be used to predict the loss of several NN archi-
tectures based on their partial learning curves
[6].

Via CoE RAISE, we accessed the Quan-
tum Annealer at the Jülich Supercom-
puter Centre, to train Q-SVR models [7]
on MLPF learning curves [8].

3. Using Performance Prediction to aid Hyperparameter Optimization
Baker et al. proposed the sequential algorithm Fast-Hyperband [6], a modified version of
Hyperband that adds an additional decision point for every epoch inside each Hyperband round.
Performance prediction is used for the extra decision points.

We propose Swift-Hyperband, a new way to integrate performance prediction with Hyperband.
Our approach requires training far fewer performance predictors than Fast-Hyperband and is
also easily parallelizable. Multiple trainings can be carried out simultaneously on different
nodes within a round. As a result, Swift-Hyperband has the potential to use Q-SVRs
and benefit from HPC environments.

4. Results
To compare Hyperband, Fast-hyperband, Swift-Hyperband and
Quantum-Swift-Hyperband (Swift-Hyperband using QSVRs) for
different NN architectures we simulate 10 runs of each algorithm
using existing datasets of learning curves for MLPF [8] and other NNs:
an image recognition CNN for Cifar10 modified from [2], an image
recognition CNN for SVHN used in [6] and a NLP LSTM for PTB used
in [6] .

To test the speedup provided by the parallelization and the
achieved accuracies we ran Hyperband, Fast-Hyperband, Swift-
Hyperband and a parallel version of Swift-Hyperband (using MPI
to coordinate one CPU node and two GPU worker nodes). The HPO tar-
get was a simple 6-layer CNN (different to the CNN used in the simulated
runs) trained on Cifar10 using a 3-dimensional search space consisting of
learning rate, weight decay and dropout. This network was chosen be-
cause it was relatively fast to train.

Both Swift-Hyperband and its version using Q-SVRs achieve accuracies comparable to classical Hyperband while
needing considerably fewer epochs in all cases. In comparison to Fast-Hyperband, Swift-Hyperband (SVR and Q-
SVR) is faster in all cases except on the SVHN problem. When it comes to the non-simulated runs we observe that
all algorithms achieve accuracies around 87%, with both Swift-Hyperband and Parallel-Swift-Hyperband slightly
beating Fast-Hyperband.

5. Conclusions
→ We proposed a new promising parallelizable HPO algorithm integrating Hyperband and performance predictors that can be used in combination with Q-SVRs. This leaves the
door open for the use of Swift-Hyperband in later hyperparameter optimization cycles of MLPF.

→ It was shown that, despite the current limitations of quantum computers, it is possible to integrate hybrid Quantum/HPC workflows for HPO.

→ There is a need for further studies on the speedup achieved by the parallelization of Swift-Hyperband when using a greater number of nodes.
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