

◼ Configuration Manipulator: Generates CMSSW configuration
files populated with different parameters from the search space.

◼ Runner: Executes CMSSW, and measures its performance
using a benchmark script [2].

◼ Optimiser: Generates parameters from the search space to
optimise the throughput.

◼ Results Manager: Stores and retrieve the results’ data from the
database.

Optimising the Configuration of the
CMS GPU Reconstruction

Abdulla Ebrahim1 Andrea Bocci2 Wael Elmedany1 Hesham Al-Ammal1
1 University of Bahrain 2 CERN

Objectives

Autotuning Framework

Autotuning Methodology Results

Conclusion & Future Work

References

Acknowledgments

Autotunign Script

Configuration
Manipulator

Results
Database

Runner

Optimiser

Results
Manager

CMSSW
Configuration

File

CMSSWBenchmarking
Script

 Generate

Execute

Store / Read

Execute / Throughput

In this work, we showed the importance of autotuning in achieving the

best performance for CMSSW. We created an autotuning framework

and presented its effectiveness in finding better configurations than the

current hand tuned parameters. In addition, we presented autotuning

strategies to make the process as feasible as possible. In the next

step, we will work on using advanced parameters search
techniques to reduce the time of finding the best parameters.

The experiments presented in this paper were carried out using the facilities of the Benefit
Advanced AI and Computing Lab at the University of Bahrain (see https://ailab.uob.edu.bh)
with support from Benefit Bahrain Company (see https://benefit.bh)

[1] Ansel, Jason, et al. "Opentuner: An extensible framework for program

autotuning." Proceedings of the 23rd international conference on Parallel

architectures and compilation. 2014.

[2] https://github.com/cms-patatrack/patatrack-scripts

[3] https://github.com/asubah/pixeltrack-standalone/tree/autotuning

[4] Lindauer, Marius, et al. "SMAC3: A Versatile Bayesian Optimization Package for

Hyperparameter Optimization." J. Mach. Learn. Res. 23.54 (2022): 1-9.

Read

Autotuning Environment

Machine 1 Machine 2 Machine 3

CPUs
Intel Xeon Silver

4114U
2x 10 Core

AMD EPYC 7763
2x 64 Core

AMD EPYC 7763
2x 64 Core

RAM 96G 256G 256G

GPUs NVIDIA A10
NVIDIA A30X 2x Tesla T4 2x NVIDIA L4

CUDA Version 12.1 12.0 12.1

Machine 1 Machine 2 Machine 3

CMSSW Release 13_0_0 13_0_0 13_0_0
Number of Jobs 1 4 4
Number of Threads 12 32 32
Number of Streams 12 24 24
Number of Events 10000 10000 10000

Table 1. The specifications of the machines that were used to

autotune and benchmark the CMSSW software.

Table 2. The configurations used during autotuning and

benchmarking the CMSSW. The same configurations are used for

the pixeltrack standalone program. The only difference is that the

pixeltrack standalone program is always benchmarked with one job

only.

Figure 2. An illustration of the autotuning framework used in this
work. It is based on the OpenTuner[1] framework.

Table 3. The types of the tuned parameters and their count.

◼ Blocks: Number of blocks in the grid. It can be dependent on

the size of the data and the number of threads. The selected

six parameters are independent and can be changed freely.

◼ Threads: Number of threads in each block. Most common

parameter. It is not dependent on any other parameter.

◼ Strides: Controls the number of data points that will be

processed by each thread. Some of the algorithms allow this

parameter to be changed freely.

Figure 3. A dataset of ~250000 entries was created by tuning the

32 parameters randomly using the low fidelity benchmark. That

dataset was used to train a boosted decision trees model by

XGBoost. A plot of the importance score was generated from the

model, which shows the number of times a parameter appears in

the trained ensemble of decision trees. From this analysis, the

size of the search space was limited to 7 parameters only
instead of 32.

Type of Parameters Count
Blocks 6
Threads 23
Strides 3
Total 32

Figure 4. The plot shows the difference in time between directly

autotuning CMSSW and Multi-Fidelity Autotuning [4]. Instead of

autotuning CMSSW directly (High fidelity benchmark data), a

minimal implementation [3] (Low fidelity benchmark data)

known as the pixeltrack standalone is used. The top performing

configurations are plugged into CMSSW and benchmarked.

Figure 5. A comparison between the throughput of the baseline

parameters, the parameters found after autotuning CMSSW directly,

and the parameters found from autotuning the pixeltrack standalone

program. The results show that the autotuning successfully increased

the throughput on all the GPUs used in the study. The Multi-Fidelity

approach was able to produce the best parameters on the A10 GPU

and the T4 GPU. .

Figure 6. Shows the best parameters found for each GPU. The best

parameters found for each GPU varies which shows the importance

of the autotuning exercise. This study used GPUs from the same

vendor, It is expected that the parameters change even more on

GPUs from multiple vendors.

CMSSW

CMSSW

GPU
Kernel

GPU
Kernel

myGpuKernel<<<numberOfBlocks, numberOfThreads>>>();

➜CMSSW offloads 40% of the HLT processing to GPUs

➜GPU Kernels require at least 2 parameters to run on GPUs.

➜The parameters have to be tuned to get the best

performance.

➜These parameters affect the performance depending on:

◼ Properties of the algorithm

◼ Size of the data

◼ Type of GPU

➜The objectives of this study are to:
◼ Implement an autotuning framework

◼ Find feasible strategies for autotuning

◼ Autotune CMSSW on multiple GPUs

Figure 1. CMSSW GPU offloading.

Autotuning Runs
8 runs, 2 for each GPU, one for direct autotuning,

the other for multi-fidelity.

Autotuning Run Duration
6 Hours / Run, The tuning time is fixed before the

run starts.

Optimisation Algorithm
AUC Bandit Sliding window meta technique [1]

Uses multiple search techniques

Rank techniques based on their performance

Final Benchmarks
Top configurations are benchmarked 10 times

First three results are thrown away

The seven left are averaged

Table 4. Details of the autotuning and benchmarking methodology.

0 2 4 6 8 10 12
Importance Score

kernelLineFit4

kernel_earlyDuplicateRemover

kernel_fastDuplicateRemover

getHits

kernel_find_ntuplets

kernelLineFit3

clusterChargeCut

findClus

fishbone

Pa
ra

m
et

er
s

Parameters Importance

NVIDIA T4
4 Jobs

32 Threads
24 Streams

NVIDIA A30X
1 Job

12 Threads
12 Streams

NVIDIA A10
1 Job

12 Threads
12 Streams

NVIDIA L4
4 Jobs

32 Threads
24 Streams

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Ev
en

ts
 /

s

Baseline
Autotuning CMSSW
Multi-Fidelity Autotuning

Machine 1
(NVIDIA A30X)

Machine 1
(NVIDIA A10)

Machine 2
(NVIDIA T4)

Machine 3
(NVIDIA L4)

100

200

300

400

500
600
700
800
900

1000

2000

Ex
pe

rim
en

ts
 /

Ho
ur

 (L
og

 S
ca

le
)

Autotuning CMSSW
Multi-Fidelity Autotuning

fishbone
threads

fishbone
stride

kernel_find_ntuplets
threads

kernel_BLFit
threads

findClus
threads

clusterChargeCut
threads

getHits
threads

Parametrs

0

100

200

300

400

500

Va
lu

es

128

16

64 64

384 384

128

512

16

64 64

192

32

96

160

2
32

64

160

96
64

96

16
32

128

256

448

160
128

16

96
64

384
416

128

Baseline
Best on T4
Best on L4
Best on A10
Best on A30x

	شريحة 1

