
  

◼ Configuration Manipulator: Generates CMSSW  configuration 
files populated with different parameters from the search space.

◼ Runner: Executes  CMSSW, and measures its performance 
using a benchmark script [2].

◼ Optimiser: Generates parameters from the search space to 
optimise the throughput.

◼ Results Manager: Stores and retrieve the results’ data from the 
database.
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In this work, we showed the importance of autotuning in achieving the 

best performance for CMSSW. We created an autotuning framework 

and presented its effectiveness in finding better configurations than the 

current hand tuned parameters. In addition, we presented autotuning 

strategies to make the process as feasible as possible. In the next 

step, we will work on using advanced parameters search 
techniques to reduce the time of finding the best parameters.

The experiments presented in this paper were carried out using the facilities of the Benefit 
Advanced AI and Computing Lab at the University of Bahrain (see https://ailab.uob.edu.bh) 
with support from Benefit Bahrain Company (see https://benefit.bh)
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Autotuning Environment

Machine 1 Machine 2 Machine 3

CPUs
Intel Xeon Silver 

4114U 
2x 10 Core

AMD EPYC 7763 
2x 64 Core 

AMD EPYC 7763 
2x 64 Core 

RAM 96G 256G 256G

GPUs NVIDIA A10
NVIDIA A30X 2x Tesla T4 2x NVIDIA L4

CUDA Version 12.1 12.0 12.1

Machine 1 Machine 2 Machine 3

CMSSW Release 13_0_0 13_0_0 13_0_0
Number of Jobs 1 4 4
Number of Threads 12 32 32
Number of Streams 12 24 24
Number of Events 10000 10000 10000

Table 1. The  specifications of the machines that were used to 

autotune and benchmark the CMSSW software. 

Table 2. The configurations used during autotuning and 

benchmarking the CMSSW. The same configurations are used for 

the pixeltrack standalone program.  The only difference is that the 

pixeltrack standalone program is always benchmarked with one job 

only.

Figure 2. An illustration of the autotuning framework used in this 
work. It is based on  the OpenTuner[1] framework.

Table 3. The types of the tuned parameters and their count.

◼ Blocks: Number of blocks in the grid. It can be dependent on 

the size of the data and the number of threads. The selected 

six parameters are independent and  can be changed freely.

◼ Threads: Number of threads in each block. Most common 

parameter. It is not dependent on any other parameter.

◼ Strides: Controls the number of data points that will be 

processed by each thread. Some of the algorithms allow this 

parameter to be changed freely.

Figure 3. A dataset of ~250000 entries was created by tuning the 

32 parameters randomly using the low fidelity benchmark. That 

dataset was used to train a boosted decision trees model by 

XGBoost. A plot of the importance score was generated from the 

model, which shows the number of times a parameter appears in 

the trained ensemble of decision trees.  From this analysis, the 

size of the search space was limited to 7 parameters only 
instead of 32.

Type of Parameters Count
Blocks 6
Threads 23
Strides 3
Total 32

Figure 4. The plot shows the difference in time between directly 

autotuning CMSSW and Multi-Fidelity Autotuning [4]. Instead of 

autotuning CMSSW directly (High fidelity benchmark data), a 

minimal implementation [3] (Low fidelity benchmark data) 

known as the pixeltrack standalone is used. The top performing 

configurations are plugged into CMSSW and benchmarked.

Figure 5. A comparison between the throughput of the baseline 

parameters, the parameters found after autotuning CMSSW directly, 

and the parameters found from autotuning the pixeltrack standalone 

program. The results show that the autotuning successfully increased 

the throughput on all the GPUs used in the study. The Multi-Fidelity 

approach was able to produce the best parameters on the A10 GPU 

and the T4 GPU. .

Figure 6. Shows the best parameters found for each GPU.  The best 

parameters found  for each GPU varies which shows the importance 

of the autotuning exercise.  This study used GPUs from the same 

vendor, It is expected that the parameters change even more on 

GPUs from multiple vendors.

CMSSW

CMSSW

GPU 
Kernel

GPU 
Kernel

myGpuKernel<<<numberOfBlocks, numberOfThreads>>>();

➜CMSSW offloads 40% of the HLT processing to GPUs

➜GPU Kernels require at least 2 parameters to run on GPUs.

➜The parameters have to be tuned to get the best 

performance.

➜These parameters affect the performance depending on: 

◼ Properties of the algorithm

◼ Size of the data

◼ Type of GPU

➜The objectives of this study are to:
◼ Implement an autotuning framework

◼ Find feasible strategies for autotuning

◼ Autotune CMSSW on multiple GPUs

Figure 1. CMSSW GPU offloading.

Autotuning Runs
8 runs, 2 for each GPU, one for direct autotuning, 

the other for multi-fidelity.

Autotuning Run Duration
6 Hours / Run, The tuning time is fixed before the 

run starts.

Optimisation Algorithm
AUC Bandit Sliding window meta technique [1]

Uses multiple search techniques

Rank techniques based on their performance

Final Benchmarks
Top configurations are benchmarked 10 times

First three results are thrown away

The seven left are averaged

Table 4.  Details of the autotuning and benchmarking methodology.
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