
Martin Kwok(Fermilab)
On behalf of the p2r and p2z team

CHEP 2023
8 May, 2023

Application of performance portability solutions for GPUs
and many-core CPUs to track reconstruction kernels

https://indico.jlab.org/event/459/contributions/11844/
https://indico.jlab.org/event/459/contributions/11844/

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Performance portability

• Heterogenous computing is one of the key to meet the HL-LHC computing challenge
• Challenges of HEP computing:
- Hundreds of computing sites (grid clusters + HPC systems + clouds)
- Hundreds of C++ kernels (several million line of code, no hot-spots)
- Hundreds of data objects (dynamic, polymorphic)
- Hundreds of non-professional developers (domain experts)

• Portability:
• Support multiple accelerator platforms with minimal changes to code base

• Performance portability:
• Efficient use of CPU and GPU

2

2020 2022 2024 2026 2028 2030 2032 2034 2036
Year

0

10

20

30

40

50

ye
ar

s]
⋅

An
nu

al
 C

PU
 C

on
su

m
pt

io
n

 [M
H

S0
6

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLASPreliminary

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Portability: Software landscape

• Rapidly changing ~O(month) portability solutions
- New features/compiler supports/New backend
• Different approaches:
- Compiler pragma-based approach
- Libraries
- Language extension
• HEP-CCE: Joint effort of major U.S. National labs involved in HEP
- Investigate different portability solutions in HEP context

3

Hardware

Software

Stay tuned
tomorrow for!  
HEP-CCE result

https://indico.jlab.org/event/459/timetable/?view=standard#b-2703-track-x-exascale-scienc
https://indico.jlab.org/event/459/timetable/?view=standard#b-2703-track-x-exascale-scienc

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

The p2r/p2z program

• Track reconstruction is one of the most computational intensive task in  
collider experiments such as the LHC at CERN

• p2r & p2z are a standalone mini-app. to perform core math of parallelized track
reconstruction
- Build tracks in radial direction from detector hits (propagation +Kalman Update)
• Different propagation matrix in R / Z direction

- Lightweight kernel extracted from a more realistic application  
(mkFit, vectorized CPU track fitting)

• Together forms the backbone of track fitting kernels

4

mkFit: https://arxiv.org/abs/2006.00071
p2r: https://github.com/cerati/p2r-tests
p2z:https://github.com/cerati/p2z-tests

https://trackreco.github.io/
https://trackreco.github.io/
https://arxiv.org/abs/2006.00071
https://github.com/cerati/p2r-tests
https://github.com/cerati/p2z-tests
https://arxiv.org/abs/2006.00071
https://github.com/cerati/p2r-tests
https://github.com/cerati/p2z-tests

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

p2r / p2z program overview

• Simplified program workflow:
- Fixed set of track parameters
- Fixed number of events (nevts)
- Fixed number of tracks in each event (ntrks)
- Single GPU kernel:
• Prepare data on CPU
• Transfer to GPU compute
• Transfer track data back to CPU

• p2r/p2z use Array-Of-Structure-Of-Array (AOSOA) as the main data structure
- Total work of ntrks x nevts, tracks in an event are grouped into batch of bsize
- Batch of tracks are put into the same data structure (MPTRK)

5

ntrks=8192

nevts=100

MPTRK 
(SOA)

…

Track  
parameters

bsize
…

…

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Overview of portability layers
• Explore different approches to portabilities:
- Template Libraries : Alpaka, Kokkos
- Compiler pragma-based approach: OpenMP, OpenACC
- Language extension : SYCL, std::par

• Alpaka and Kokkos has different abstraction level
- Alpaka is closer to CUDA-level
- Kokkos aims to be more descriptive

6

Kokkos

 Kokkos::parallel_for("Kernel", 
 team_policy(team_policy_range,team_size,vector_size),
 KOKKOS_LAMBDA(const member_type &teamMember){
 launch_p2r_kernel<bsize, nlayer>()); // kernel for 1 track
 });

template <int bSize, int layers, typename member_type>
KOKKOS_FUNCTION void launch_p2r_kernel(const member_type& teamMember){

 Kokkos::parallel_for(Kokkos::TeamThreadRange(teamMember,
 teamMember.team_size()),[&] (const int& i_local){
 int i = teamMember.league_rank () * teamMember.team_size () + i_local;
 for(int layer = 0; layer < layers; ++layer) {
 //
 propagateToR<N>(…);
 KalmanUpdate<N>(…);
 //
 });
 return;
}

Alpaka

struct GPUsequenceKernel
{
public:
 template<typename TAcc>
 ALPAKA_FN_ACC auto operator()(
 TAcc const& acc,
 MPTRK* btracks_,
 MPHIT* bhits_,
 MPTRK* obtracks_
) const -> void
 {
 using Dim = alpaka::Dim<TAcc>;
 using Idx = alpaka::Idx<TAcc>;
 using Vec = alpaka::Vec<Dim, Idx>;

 for(int layer = 0; layer < nlayer; ++layer) {
 //
 propagateToR<N>(…);
 KalmanUpdate<N>(…);
 //
 }
};
//
 alpaka::enqueue(queue, taskKernel);
 alpaka::wait(queue);

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Overview of portability layers
• SYCL is a specification of single-source C++ programming model for heterogeneous computing
- “Native” support for Intel’s hardware
- Alpaka/Kokkos has/are developing a SYCL-backend to support intel GPUs

• Standard parallelization since C++17
- Plain C++ code!
- Limited to what the standard supports:  

No async operation, no launch parameters, need unified memory, etc
- NVIDIA’s advocated solution for portability: 

 A closed source compiler(nvc++) for NVIDIA GPUs

7

SYCL

#include <CL/sycl.hpp>

auto p2r_kernels = [=,btracksPtr = trcks.data(),
 outtracksPtr = outtrcks.data(),
 bhitsPtr = hits.data()] (sycl::id<1> i) {
 propagateToR<N>(…);
 KalmanUpdate<N(…);
 };

cq.submit([&](sycl::handler &h){
 h.parallel_for(sycl::nd_range(global_range,local_range), p2r_kernels);
});

std::par

auto p2r_kernels = [=,btracksPtr = trcks.data(),
 outtracksPtr = outtrcks.data(),
 bhitsPtr = hits.data()] (const auto i) {
 propagateToR<N>(…);
 KalmanUpdate<N(…);
 };

std::for_each(policy,
 impl::counting_iterator(0),
 impl::counting_iterator(outer_loop_range),
 p2r_kernels);

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Overview of portability layers
• Compiler directive approach: OpenMP, OpenACC
- Explicitly tells compiler how to execute the loop
• Easy to write simple off-loading code
• Can get complicated

8

OpenACC

#pragma acc parallel loop gang worker collapse(2) \
 default(present) num_workers(NUM_WORKERS) \
 private(errorProp, temp, rotT00, rotT01
 for (size_t ie=0;ie<nevts;++ie) { // loop over events
 for (size_t ib=0;ib<nb;++ib) { // loop over tracks
 const MPTRK* btracks = bTk(trk, ie, ib);
 MPTRK* obtracks = bTk(outtrk, ie, ib);
 for(size_t layer=0; layer<nlayer; ++layer) {
 const MPHIT* bhits = bHit(hit, ie, ib, layer);
 propagateToR(…);
 KalmanUpdate(…);
 }
 }
 }
 }

OpenMP

#pragma omp target update to(trk[], hit[])\
 nowait depend(out:trk[])

#pragma omp target teams distribute parallel \
for num_teams(...) num_threads(...) collapse(2)\
 map(to: trk[...], hit[], outtrk[])\
 nowait depend(in:trk[]) depend(out:outtrk[])

for (size_t ib=0;ib<nb;++ib) { // loop over blocks
 for (size_t tIdx=0;tIdx<bsize;++tIdx) { // loop over threads
 ...
 #pragma unroll
 for(size_t layer=0; layer<nlayer; ++layer) {
 ..
 propagatetoz(...);
 kalmanupdate(...);
 }
 }
}

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Measurement

• p2r measurement done on Joint Laboratory for System Evaluation (JLSE)
- HPC Testbed system hosted at Argonne National Lab
- Does not include time for data-transfer (~3x kernel time on a A100 GPU)
• All versions compiled with the same p2r parameters
- Perform computation on ~800k tracks, repeated 5 times

• p2z performs similar measurements on Summit GPU node
- Includes data-transfer time
- Explores different compiler/implementations

9

Typical p2z/p2r GPU timeline w/ single stream

~3x kernel time

Data movement 
(CPU to GPU) CUDA Kernel

https://www.jlse.anl.gov/
https://www.jlse.anl.gov/

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

GPU Results - NVIDIA

• p2r’s measurement more sensitive changes to kernel execution
- p2z measurement is sensitive to overheads related to data movement
• Kokkos and Alpaka both managed to produce close-to-native performance
• Unclear what is causing the slowdown in SYCL/std::par in p2r versions
- Profiling shows significant branching in SYCL version

10

p2r: NVIDIA GPU (A100)
Kernel-only

p2z: NVIDIA GPU (V100) 
Data movement + kernel

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

GPU Results - NVIDIA

• Performance can varies a lot — due to varies issues
- Compilers matters — especially for directive-based portability
- Memory pinning
- Data layout, temporary data placement (local memory/shared memory)

• Optimized performance is not easy to achieve
- Even for a simple, single-kernel application like p2r/p2z
- Iteration between profiling & implementation

11

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

GPU Results - AMD/Intel

• Portability technologies are expanding towards AMD/intel GPU supports
- Results are more preliminary
- Switching backends for Alpaka and Kokkos are relatively seamless
• HIP backend:
- Alpaka and Kokkos has reasonable performance
• Intel’s A770 GPU do not support double-precision
- Results obtained with DP emulation, could have significant performance impact
- Plans to revisit Kokkos’s result with the latest SYCL v4.0.1
- Alpaka is working on a SYCL backend

12

p2r: Intel GPU A770*p2r: AMD MI-100

*not measured on JLSE

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

CPU results

• Native implementation done with TBB
- Multi-threaded and vectorized
• Non-trivial to have efficient CPU & GPU performance with same code base
- Data layout issue
- Make sure loops are vectorized
• Portability layers can achieve ~50-80% native performance

13

p2r: Intel Xeon Gold 6336Y CPU p2z: Intel Xeon Gold 6226R CPU

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Summary and outlook

• Explored major portability solutions in a HEP-testbed application
- Alpaka, Kokkos, SYCL, std::par, OpenMP

• Most solutions can give reasonable performance on NVIDIA GPUs
• Support for HIP/Intel GPUs are less mature

• Looking forward:
- Summarize the porting experience towards HEP-CCE final report
- “Best” solution will probably depend on application/situation

14

Acknowledgement:
We thank the Joint Laboratory for System Evaluation (JLSE)  
for providing the resources for the performance measurements 
used in this work.

https://www.jlse.anl.gov/
https://www.jlse.anl.gov/

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Back up

15

05/08/2023 Martin Kwok | Performance Portability with CPU and GPU CHEP23

Software versions used in p2r results

16

TBB CUDA HIP Alpaka  
(v 0.9.0)

Kokkos  
(3.6.1)

SYCL std::par

NVIDIA GPU - cuda/11.6.2
cuda/11.6.2
rocm/5.2.0

cuda/11.6.2  
gcc/9.2.0 

nvcc

cuda/11.6.2
gcc/8.2.0 

nvcc

cuda/11.6.2
intel/llvm-sycl [1]

dpcpp/
2022.1.0

AMD GPU - N/A rocm/5.2.0
rocm/5.1.3  
gcc/9.2.0

hipcc

rocm/5.1.3  
gcc/9.2.0

hipcc

cuda/11.6.2
intel/llvm-sycl [1] N/A

Intel GPU - N/A N/A N/A
Kokkos/4.0  

dpcpp/
2023.0.0

dpcpp/2023.0.0
dpcpp/

2023.0.0  
dpl/2022.0.0

CPU(x86) gcc/XXX N/A N/A [TBB] gcc/11.1.0 dpcpp/2023.0.0 nvc++/22.7

[1] intel/llvm sycl branch commit 70c2dc6

