CMSSW Scaling Limits on Many-Core Machines

Dr Christopher Jones¹ and Dr Patrick Gartung¹ on behalf of the CMS collaboration

^I Fermi National Accelerator Laboratory

FERMILAB-POSTER-23-031-CMS-CSAI

CMS Framework's Levels of Concurrency

Shared resources (e.g. reading/writing files) are serialized via non-block tasks queues which allows efficient scheduling of other tasks when a task must wait for a resource. Uses Intel Thread Building Blocks library to schedule tasks.

Measurement Methodology

Hardware

Perlmutter

AMD EPYC 7763 CPUs SSD Storage

2 sockets x 64 cores/socket x 2 hardware threads/core

= 256 threads / node

Strategy

Completely fill node Scale # events as # threads Jobs process same events

Jobs = 256 / (threads / job)Test weak scaling Input file contains same 100 events repeated

Production configurations

Measurement **Thread Scaling** Memory Usage

Reconstruction

Apply pattern recognition to find physics quantities

Input: simulated HLT output Cached input: read 100 events into memory and recycle them

Output: physics quantities for analyses

Threads / Process

Scaling limited by input Reading ROOT files must be done serially

Good throughput even at 256 MB / thread at 128 threads

Overlay pp Collisions (Pile-up) & High Level Trigger

Combine simulated tt event with premade *pile-up* events Each concurrent event reads its own pile-up file Apply High Level Trigger selections

Input: simulated tt events & LHC Run 3 *pile-up* events *Pile-up event:* 50 - 75 pp collisions per bunch crossing with 12

bunch crossings per tt event **Cached input:** read 100 tt events into memory and recycle them Pile-up events not cached

Output: simulated HLT output

2 threads needed to get below 2 GB / thread

Event Generation & Detector Simulation

Use Pythia 8 to simulate tt events Use Geant 4 to simulate detector response

Input: none

Output: simulated tt events

Threads / Process Scaling limit is under investigation

This document was prepared by CMS using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP

User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

Fermi National Accelerator Laboratory

Good throughput even at 128 MB / thread at 64 threads

