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Motivation é@ ICEPP

 HL-LHC is coming (~2027).
* With larger pile-up ({¢) ~ 200 ) and high readout rate, CPU consumption will dramatically increase.
* Especially track reconstruction -> New techniques are needed
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
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Introduction: Quantum Annealing é@ ICEPP

* Quantum Annealing:
An optimisation process for finding the global minimum of a given function by using quantum fluctuations.

* Quantum Annealer: The machine which is designed to perform the quantum annealing process.
e.g. D-Wave computers

1

magnetic fields Higher probability /qultS\ N N N
/\\\ of lower state. % 1 O(a; b; q) — Z a;q; + Z Z bijCquJ' g € {()7 1}
, i=1 i
A A 1 O
o Q ‘ {? ‘a ) coupler Quadratic

. . J applied magnetic field ‘ QUBO Upconstralned

circulating currents Binary

. . . Optimisation
qubits = q; bias weights = a, coupling strength = b;

degree to which a qubit tends toa  degree to which two qubits tend
particular state to the same state

* Quantum Annealer can only deal with the problem which can be transform to a "QUBO” or “Ising” function.
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Quantum Pattern Recognition: Algorithm Overview

SHICEPP
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 We found the Quantum Annealing could improve the speed of pattern recognition and provide another way to perform the

particle tracking. Result published on: arXiv: 1902.08324
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e T, : potential triplet
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https://arxiv.org/abs/1902.08324

GNN application in Quantum
Pattern Recognition




Data preparation (l)

N

Motivation: Replace QUBO formation by ML techniques.
Graph neural network (GNN) is a suitable choice to deal with it.

N
O(a,b,T) = Z a;T; +

i j<i

N N
D> > biTiT;

In single event:

T;T; from the QA solved
QUBO (Hit ID)

—

”Raw input” from
TrackML challenge datasets:

(HitID, x,y,z, detector layers etc.)

For each T;T;:
Doublet list
(3 pair of HitID)

Hit list
(HitID, x,y,z, detector
layers etc.)

—
—

* Hitsin each Triplet T contained Hit ID.

Target (edge score) =1
If it’s not, then Target (edge score) =0
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The parameter “Hit ID” parameter is the key for the data extraction.

These IDs are used to form the doublet list and the hit list.
The GNN Target, is given by matching the Hit ID from the Hit list per T; T;
If the Hit ID from a pair of hits (n;, n;) in the is equal to Hit ID in the doublet list:

We want to train the GNN to predict the correction combination of edge scores.
*  We would like to preform a edge classification in order to form the T;T; from raw hits.

To do that we need to consider all the combinations of edges scores per graph.

CHEP 2023

In 1 GNN sample:

GNN Target

Trainable parameters

The graph:

n;

n;: node i
e;;: edge for n; to n;

ICEPP
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Nearby Hits Searching (Il) ICEPP
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* In order to get all the combinations, we need to search for
nearby hits which is close to the original hits in the same
detector layer (i.e. same r-coordinate).
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* QOur dataset have 269550 samples, only 6% of them are
Signal samples.

* 40% are used for training; 40% are used for validation; 20%
are used for test.
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Network architecture @ ICEPP
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Node features ‘x’ | Node features ‘en’ Edge features ‘D’
= X r Ar
Detector layer ID Az
— Y y
Z Detector volume ID  Curturve atan2(Ar,Az)
—> Detector module ID

In each EdgeConv Layers
* From each layer, the

. § N EdgeConv parameters e,,

= ’ €., are passing to the next
layer.
> Y

: - = * Final output, e is the edge

= score coming from the last
ﬂ, EdgeConv layer.
— . >
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Loss function and score distribution \ @ICEPP
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* We use Cross Entropy Loss as our Loss function.
* The impact of batch size is studies and batch size = 8 has been used.
e Underfitting observed.

2 hidden layers (32,16), 30% dataset (#Sample = 107820) 2 hidden layers (32,16), 30% dataset (#Sample = 107820)
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Edge score distributions

#Sample = 53910, #Doublet = 323460, Score distribution
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“Predict: TP” : edges have target edge score =1
“Predict: FP” : edges have target edge score =0

2023/5/9

1.0

N

ICEPP

The University of Tokyo

#Sangple = 53910, #Doublet = 323460, batch size = 8, Score distribution
106 3
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ROC curve

SAICEPP
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#Sample = 53910, #Doublet = 323460, ROC curve
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ROC curves are shown with different batch
size.

Smaller batch size gives higher AUC.

The best cases here is given by batch size = 8,
with AUC =0.92
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Score distribution per graph

SAICEPP
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10°

#Sample = 53910, Score per graph

0 Predict
Target

Sum of edge scores per graph is shown.

In target, only score = 0,2,4,6 are allowed
since e;; = ej; is always true.

The predicted score, on the other hand, have
also score = 1,3,5; this is because in some
cases, score of e;; # e;;. This is possible as we
didn’t add e;; = ej; as one of the input
features of our network.

However, this is a non-physical result. Since the
edges, e;; = ej; have to be always true as this
is a physical doublet.
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QUBO comparision © SSICEPP
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N N N

e Graphs with scores > 3 are selected
O(Cl, b, T) = Z a;T; + Z Z bijTiTj
‘ A * —1 < b;; < —0.2is given by the pervious study.
, #Sample = 53910, #Doublet = 323460, -1.0 <=5 <= -0.2
103 - . L .
: s Original QUBO, #Triplet pairs = 14572 W.e f';\re expecting similar distribution to the
GNN-generated QUBO, #Triplet pairs = 17054 orlglnal QUBO.

* More investigation is needed for the distribution
for GNN-generated QUBO in -0.85 to -0.25.

-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2
QUBO strength
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Application for the ATLAS dataset




Application for the ATLAS dataset ATL o SNICEPP

EXPERIMENT ve The University of Tokyo

* We verified if track finding by annealing machines works in a realistic environment with the ATLAS dataset.

* Detector-hit information is taken from the dataset processed by the ATLAS software (https://cds.cern.ch/record/2767187),
while the annealing tracking is done by other standalone software.

* This study has been performed independently from the previous GNN study.

* We used Fixstars Amplify Annealing Engine(AE) which was an annealing machine developed by Fixstars.
e Perform simulated annealing using GPU(NVIDIA A100)
e 262k bits, fully connected

* This time, we used “doublets” for bits.
 When two doublets have close curvature in X-Y plane or close angle in R-Z plane, we give them low energy.
* Doublets and double-pairs were selected before a QUBO building to reduce the size of QUBO.

bij = —S;;(<0)
doublet
H(abm_zw D ILLIED W RLED 3 XTI B SO
I j<i L j<i I j<i / .&.7

* D; : Potential doublet

* a; : Bias weight which is depending on N5 in a doublet. ./"—"
: . 1 by

* Sij, Wij : The coupling strength, depending on the A (E) , A6 between D; and D;.

* {jj : The coupling strength, we give constant ({;;=5).

W;;(<0)
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https://cds.cern.ch/record/2767187

Event display ATLAS ICEPP

EXPERIMENT

* Reconstructed results with 200 muons/event MC sample generated with the ATLAS software.
* 0.5GeV<pr<10GeVin 1/pyflat distribution, |n]| < 1.0

e Layout of the ATLAS inner tracker
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Results with real data ATL o é@ ICEPP

EXPERIMENT ve The University of Tokyo

* We applied this algorithm to real ATLAS data taken by non-physics random triggers.

* The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if
reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks.

* The annealing time was compared with MC sample(10 pions/event with pile-up 20).
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e Qur algorithm also works successfully with real ATLAS data.
* |tis a good starting point to further explore the method.

Track P, [GeV]
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Conclusions é@ ICEPP
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* 2type of studies are performed with the annealing tracking algorithm:
* GNN application in Quantum Pattern Recognition
* In order to make use of the GNN in the pre-processing stage of this algorithm, we performed an edge-
classification using a bi-directional graph made by simplified sample which only contain 4 hits.
* Theresult indicated that it is possible but there are rooms to improve.
* Application for the ATLAS dataset
* Another study shows that the algorithm can also deal with real data collected from the ATLAS detector using low

pileup (and no pileup) samples, in both MC and data.

* Result looks promising and further development is under consideration.
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