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Motivation

• HL-LHC is coming (~2027). 
• With larger pile-up ( ! ~ 200 ) and high readout rate, CPU consumption will dramatically increase.

• Especially track reconstruction -> New techniques are needed

ATLAS Computing Public Result CERN-LHCC-2022-005

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
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Introduction: Quantum Annealing

• Quantum Annealing: 

An optimisation process for finding the global minimum of a given function by using quantum fluctuations.

• Quantum Annealer: The machine which is designed to perform the quantum annealing process. 

e.g. D-Wave computers

• Quantum Annealer can only deal with the problem which can be transform to a ”QUBO” or “Ising” function.
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Quantum Pattern Recognition: Algorithm Overview

• We found the Quantum Annealing could improve the speed of pattern recognition and provide another way to perform the 
particle tracking. Result published on: arXiv: 1902.08324

• !" : potential triplet
• #" : Bias weight which has been set to 0.
• $" : The coupling strength, depending on the 

relation between !" & !%

https://arxiv.org/abs/1902.08324
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GNN application in Quantum 
Pattern Recognition
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• Motivation: Replace QUBO formation by ML techniques.
• Graph neural network (GNN) is a suitable choice to deal with it.

Data preparation (I)

!"!# from the QA solved 
QUBO (Hit ID)

”Raw input” from
TrackML challenge datasets:

(HitID, x,y,z, detector layers etc.)

Doublet list 
(3 pair of HitID)

For each !"!#: 

• The parameter “Hit ID” parameter is the key for the data extraction.
• Hits in each Triplet ! contained Hit ID.
• These IDs are used to form the doublet list and the hit list.

• The GNN Target, is given by matching the Hit ID from the Hit list per !"!#
• If the Hit ID from a pair of hits ($", $#) in the is equal to Hit ID in the doublet list: 

Target (edge score) = 1
• If it’s not, then Target (edge score) = 0
• We want to train the GNN to predict the correction combination of edge scores.

• We would like to preform a edge classification in order to form the !"!# from raw hits.
• To do that we need to consider all the combinations of edges scores per graph.

CHEP 2023

Hit list
(HitID, x,y,z, detector 

layers etc.)

In single event: 

GNN Target

Trainable parameters 

In 1 GNN sample:

The graph:

$"

%"# $#
%#"

$": node &
%"#: edge for $" to $#
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• In order to get all the combinations, we need to search for 
nearby hits which is close to the original hits in the same 
detector layer (i.e. same r-coordinate).

Nearby Hits Searching (II)

CHEP 2023

z z

rr

1 Fully connected graph 1 Fully connected graph
1 Fully disconnected graph
6 partially connected graphs

• Our dataset have 269550 samples, only 6% of them are 
Signal samples. 

• 40% are used for training; 40% are used for validation; 20% 
are used for test.

Signal

BKGs
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Network architecture
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Node features ‘x’ Node features ‘en’ Edge features ‘D’
x r ∆"
y Detector layer ID ∆#
z Detector volume ID Curturve $%$&2(∆", ∆#)

Detector module ID

EdgeConv
Layers

Node 
featues

Edge
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Edge scores
+,-
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‘en’
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3(./, 0/, .12, 012, 4)

+/ = ./ + 0/
+12 = .12 + 012

Edge scores
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• From each layer, the 
EdgeConv parameters +/, 
+12 are passing to the next 
layer.

• Final output, +,- is the edge 
score coming from the last 
EdgeConv layer.
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Loss function and score distribution
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• We use Cross Entropy Loss as our Loss function.
• The impact of batch size is studies and batch size = 8 has been used.
• Underfitting observed.
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Edge score distributions
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• “Predict: TP” : edges have target edge score = 1
• “Predict: FP” : edges have target edge score = 0
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ROC curve

CHEP 2023

• ROC curves are shown with different batch 
size.

• Smaller batch size gives higher AUC.
• The best cases here is given by batch size = 8, 

with AUC = 0.92
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Score distribution per graph

CHEP 2023

• Sum of edge scores per graph is shown.

• In target, only score =  0,2,4,6 are allowed 
since !"# = !#" is always true.

• The predicted score, on the other hand, have 
also score = 1,3,5; this is because in some 
cases, score of !"# ≠ !#". This is possible as we 
didn’t add !"# = !#" as one of the input 
features of our network.

• However, this is a non-physical result. Since the 
edges, !"# = !#" have to be always true as this 
is a physical doublet.
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QUBO comparision

CHEP 2023

• Graphs with scores > 3 are selected

• −1 ≤ $%& ≤ −0.2 is given by the pervious study.

• We are expecting similar distribution to the 
original QUBO.

• More investigation is needed for the distribution 
for GNN-generated QUBO in -0.85 to -0.25.
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Application for the ATLAS dataset
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Application for the ATLAS dataset

TRACK FINDING BY GPU-BASED ANNEALING MACHINE

• We verified if track finding by annealing machines works in a realistic environment with the ATLAS dataset.
• Detector-hit information is taken from the dataset processed by the ATLAS software (https://cds.cern.ch/record/2767187), 

while the annealing tracking is done by other standalone software.

• This study has been performed independently from the previous GNN study.

• We used Fixstars Amplify Annealing Engine(AE) which was an annealing machine developed by Fixstars.
• Perform simulated annealing using GPU(NVIDIA A100)

• 262k bits, fully connected

• This time, we used “doublets” for bits.

• When two doublets have close curvature in X-Y plane or close angle in R-Z plane, we give them low energy.
• Doublets and double-pairs were selected before a QUBO building to reduce the size of QUBO.

• !" : Potential doublet
• #" : Bias weight which is depending on $%&'() in a doublet.

• *"+,-"+ : The coupling strength, depending on the Δ /
0 , Δ1 between !" and !+.

• 3"+ : The coupling strength, we give constant (3"+=5).

https://cds.cern.ch/record/2767187
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Event display

TRACK FINDING BY GPU-BASED ANNEALING MACHINE

• Reconstructed results with 200 muons/event MC sample generated with the ATLAS software.

• 0.5 GeV < pT < 10 GeV in 1/pT flat distribution, ! < 1.0

Track findings by annealing 

machines work successfully 

in a realistic environment.

Lifetime VS Decay Radius 
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ATLAS 内部飛跡検出器 

ATLAS 標準 Tracking : 主に SCT2 層目以上を通過するトラックを再構成 
 -> 寿命の短い飛跡を再構成することができない 

low-cτ 領域に感度を得るためには，短飛跡に対する飛跡再構成能が鍵となる． 

• Layout of the ATLAS inner tracker
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Results with real data

TRACK FINDING BY GPU-BASED ANNEALING MACHINE

• We applied this algorithm to real ATLAS data taken by non-physics random triggers.
• The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if 

reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks. 

• The annealing time was compared with MC sample(10 pions/event with pile-up 20).

• Our algorithm also works successfully with real ATLAS data. 

• It is a good starting point to further explore the method.

Average pre-processing 

time for data is ~0.6 sec.

(single core, 

11th Gen Intel(R) 

Core(TM) i9-11900K 

@ 3.50GHz)



2023/5/9 CHEP 2023 18

Conclusions

• 2 type of studies are performed with the annealing tracking algorithm:

• GNN application in Quantum Pattern Recognition 

• In order to make use of the GNN in the pre-processing stage of this algorithm, we performed an edge-

classification using a bi-directional graph made by simplified sample which only contain 4 hits.

• The result indicated that it is possible but there are rooms to improve.

• Application for the ATLAS dataset

• Another study shows that the algorithm can also deal with real data collected from the ATLAS detector using low 

pileup (and no pileup) samples, in both MC and data.

• Result looks promising and further development is under consideration.


