Application of quantum computing techniques in particle tracking at LHC

DAIYA AKIYAMAA, KOKI ARAKAWAA, WAI YUEN CHANB, SANMAY GANGULYB, TOSHIAKI KAJIB, JURI MINAMIA, RYU SAWADAB, JUNICHI TANAKAB, KOJI TERASHIB, KOHEI YORITAA

WASEDA UNIVERSITYA, ICEPP, THE UNIVERSITY OF TOKYOB

CHEP2023

2023/5/9
Motivation

- HL-LHC is coming (~2027).
- With larger pile-up ($\langle \mu \rangle \sim 200$) and high readout rate, CPU consumption will dramatically increase.
 - Especially track reconstruction -> New techniques are needed

CERN-LHCC-2022-005

ATLAS Computing Public Result
Introduction: Quantum Annealing

• Quantum Annealing:
 An optimisation process for finding the global minimum of a given function by using quantum fluctuations.

• Quantum Annealer: The machine which is designed to perform the quantum annealing process.
 e.g. D-Wave computers

- Quantum Annealer can only deal with the problem which can be transform to a "QUBO" or "Ising" function.
Quantum Pattern Recognition: Algorithm Overview

- We found the Quantum Annealing could improve the speed of pattern recognition and provide another way to perform the particle tracking. Result published on: [arXiv: 1902.08324](https://arxiv.org/abs/1902.08324)

\[O(a, b, T) = \sum_{i}^{N} a_i T_i + \sum_{i}^{N} \sum_{j<i}^{N} b_{ij} T_i T_j \]

- \(T_i \): potential triplet
- \(a_i \): Bias weight which has been set to 0.
- \(b_i \): The coupling strength, depending on the relation between \(T_i \) & \(T_j \)
GNN application in Quantum Pattern Recognition
Motivation: Replace QUBO formation by ML techniques.
Graph neural network (GNN) is a suitable choice to deal with it.

Data preparation (I)

- The parameter “Hit ID” parameter is the key for the data extraction.
 - Hits in each Triplet \(T \) contained Hit ID.
 - These IDs are used to form the doublet list and the hit list.
 - The GNN Target, is given by matching the Hit ID from the Hit list per \(T_iT_j \)
 - If the Hit ID from a pair of hits \((n_i, n_j) \) in the is equal to Hit ID in the doublet list:
 Target (edge score) = 1
 - If it’s not, then Target (edge score) = 0
 - We want to train the GNN to predict the correction combination of edge scores.
 - We would like to preform a edge classification in order to form the \(T_iT_j \) from raw hits.
 - To do that we need to consider all the combinations of edges scores per graph.

In single event:

\[T_iT_j \text{ from the QA solved QUBO (Hit ID)} \]

"Raw input" from TrackML challenge datasets:
(HitID, x,y,z, detector layers etc.)

For each \(T_iT_j \):

- Doublet list (3 pair of HitID)
- Hit list (HitID, x,y,z, detector layers etc.)

In 1 GNN sample:

- GNN Target
- Trainable parameters

The graph:

- \(n_i \): node \(i \)
- \(e_{ij} \): edge for \(n_i \) to \(n_j \)

\[
O(a,b,T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j<i}^{N} b_{ij} T_i T_j
\]
In order to get all the combinations, we need to search for nearby hits which is close to the original hits in the same detector layer (i.e. same r-coordinate).

- Our dataset have 269550 samples, only 6% of them are Signal samples.
- 40% are used for training; 40% are used for validation; 20% are used for test.
Network architecture

<table>
<thead>
<tr>
<th>Node features ‘x’</th>
<th>Node features ‘en’</th>
<th>Edge features ‘D’</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>r</td>
<td>Δr</td>
</tr>
<tr>
<td>y</td>
<td>Detector layer ID</td>
<td>Δz</td>
</tr>
<tr>
<td>z</td>
<td>Detector volume ID</td>
<td>Curvature $atan2(Δr, Δz)$</td>
</tr>
<tr>
<td></td>
<td>Detector module ID</td>
<td></td>
</tr>
</tbody>
</table>

In each EdgeConv Layers

- From each layer, the EdgeConv parameters e_x, e_{en} are passing to the next layer.

- Final output, e_s^N is the edge score coming from the last EdgeConv layer.
• We use Cross Entropy Loss as our Loss function.
• The impact of batch size is studies and batch size = 8 has been used.
• Underfitting observed.
Edge score distributions

- “Predict: TP”: edges have target edge score = 1
- “Predict: FP”: edges have target edge score = 0
ROC curves are shown with different batch size.
- Smaller batch size gives higher AUC.
- The best cases here is given by batch size = 8, with AUC = 0.92
• Sum of edge scores per graph is shown.

• In target, only score = 0, 2, 4, 6 are allowed since $e_{ij} = e_{ji}$ is always true.

• The predicted score, on the other hand, have also score = 1, 3, 5; this is because in some cases, score of $e_{ij} \neq e_{ji}$. This is possible as we didn’t add $e_{ij} = e_{ji}$ as one of the input features of our network.

• However, this is a non-physical result. Since the edges, $e_{ij} = e_{ji}$ have to be always true as this is a physical doublet.
Graphs with scores > 3 are selected

\(-1 \leq b_{ij} \leq -0.2\) is given by the previous study.

We are expecting similar distribution to the original QUBO.

More investigation is needed for the distribution for GNN-generated QUBO in -0.85 to -0.25.
Application for the ATLAS dataset
Application for the ATLAS dataset

- We verified if track finding by annealing machines works in a realistic environment with the ATLAS dataset.
- Detector-hit information is taken from the dataset processed by the ATLAS software (https://cds.cern.ch/record/2767187), while the annealing tracking is done by other standalone software.
- **This study has been performed independently from the previous GNN study.**

- We used Fixstars Amplify Annealing Engine (AE) which was an annealing machine developed by Fixstars.
 - Perform simulated annealing using GPU (NVIDIA A100)
 - 262k bits, fully connected

- This time, we used “doublets” for bits.
 - When two doublets have close curvature in X-Y plane or close angle in R-Z plane, we give them low energy.
 - Doublets and double-pairs were selected before a QUBO building to reduce the size of QUBO.

\[
H(a, b, D) = \sum_{i}^{N} a_i D_i - \sum_{i}^{N} \sum_{j<i}^{N} S_{ij} D_i D_j - \sum_{i}^{N} \sum_{j<i}^{N} W_{ij} D_i D_j + \sum_{i}^{N} \sum_{j<i}^{N} \zeta_{ij} D_i D_j
\]

- \(D_i\) : Potential doublet
- \(a_i\) : Bias weight which is depending on \(N_{holes}\) in a doublet.
- \(S_{ij}, W_{ij}\) : The coupling strength, depending on the \(\Delta \left(\frac{1}{\Delta R}\right), \Delta \theta\) between \(D_i\) and \(D_j\).
- \(\zeta_{ij}\) : The coupling strength, we give constant (\(\zeta_{ij}=5\)).
Event display

- Reconstructed results with 200 muons/event MC sample generated with the ATLAS software.
 - $0.5 \text{ GeV} < p_T < 10 \text{ GeV}$ in $1/p_T$ flat distribution, $|\eta| < 1.0$

Track findings by annealing machines work successfully in a realistic environment.

ATLAS Simulation Preliminary
Proof-of-concept
GPU-Based Annealer Reconstruction
MC 200 muons w/o pile-up

- Reconstructed true tracks
- Unreconstructed true tracks
- Fake tracks

ATLAS Simulation Preliminary
Proof-of-concept
GPU-Based Annealer Reconstruction
MC 200 muons w/o pile-up

- Reconstructed true tracks
- Unreconstructed true tracks
- Fake tracks

Layout of the ATLAS inner tracker
Results with real data

- We applied this algorithm to real ATLAS data taken by non-physics random triggers.
- The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks.
- The annealing time was compared with MC sample (10 pions/event with pile-up 20).

- Our algorithm also works successfully with real ATLAS data.
- It is a good starting point to further explore the method.
Conclusions

- 2 type of studies are performed with the annealing tracking algorithm:
 - GNN application in Quantum Pattern Recognition
 - In order to make use of the GNN in the pre-processing stage of this algorithm, we performed an edge-classification using a bi-directional graph made by simplified sample which only contain 4 hits.
 - The result indicated that it is possible but there are rooms to improve.
 - Application for the ATLAS dataset
 - Another study shows that the algorithm can also deal with real data collected from the ATLAS detector using low pileup (and no pileup) samples, in both MC and data.
 - Result looks promising and further development is under consideration.