

Application of quantum computing techniques in particle tracking at LHC

DAIYA AKIYAMA^A, KOKI ARAKAWA^A, <u>WAI YUEN CHAN^B</u>, SANMAY GANGULY^B , TOSHIAKI KAJI^B , JURI MINAMI^A, RYU SAWADA^B , JUNICH TANAKA^B , KOJI TERASHI^B , KOHEI YORITA^A

CHEP2023

2023/5/9

WASEDA UNIVERSITY^A, ICEPP, THE UNIVERSITY OF TOKYO^B

Motivation

- HL-LHC is coming (~2027).
- With larger pile-up ($\langle \mu \rangle \sim 200$) and high readout rate, CPU consumption will dramatically increase.
 - Especially track reconstruction -> New techniques are needed

Introduction: Quantum Annealing

• Quantum Annealing:

An optimisation process for finding the global minimum of a given function by using quantum fluctuations.

• Quantum Annealer: The machine which is designed to perform the quantum annealing process. e.g. D-Wave computers

• Quantum Annealer can only deal with the problem which can be transform to a "QUBO" or "Ising" function.

Quantum Pattern Recognition: Algorithm Overview

 We found the Quantum Annealing could improve the speed of pattern recognition and provide another way to perform the particle tracking. Result published on: <u>arXiv: 1902.08324</u>

potential _ doublets

- T_i : potential triplet
- a_i : Bias weight which has been set to 0.
- b_i : The coupling strength, depending on the relation between $T_i \& T_j$

GNN application in Quantum Pattern Recognition

Data preparation (I)

 n_i

 n_i : node *i*

 e_{ij} : edge for n_i to n_j

 $O(a,b,T) = \sum_{i=1}^{N} a_i T_i + \sum_{i=1}^{N} \sum_{j=1}^{N} b_{ij} T_i T_j$

• Graph neural network (GNN) is a suitable choice to deal with it.

- The parameter fit iD parameter is the key for the data e
 - Hits in each Triplet T contained Hit ID.
 These IDs are used to form the doublet list and the hit list.
 - The GNN Target, is given by matching the Hit ID from the Hit list per $T_i T_j$
 - If the Hit ID from a pair of hits (n_i, n_j) in the is equal to Hit ID in the doublet list: Target (edge score) = 1
 - If it's not, then Target (edge score) = 0
 - We want to train the GNN to predict the correction combination of edge scores.
- We would like to preform a edge classification in order to form the $T_i T_j$ from raw hits.
 - To do that we need to consider all the combinations of edges scores per graph.

Nearby Hits Searching (II)

• In order to get all the combinations, we need to search for nearby hits which is close to the original hits in the same detector layer (i.e. same r-coordinate).

- Our dataset have 269550 samples, only 6% of them are Signal samples.
- 40% are used for training; 40% are used for validation; 20% are used for test.

Network architecture

- From each layer, the EdgeConv parameters e_x , e_{en} are passing to the next layer.
- Final output, e^N_s is the edge score coming from the last EdgeConv layer.

Loss function and score distribution

- We use Cross Entropy Loss as our Loss function.
- The impact of batch size is studies and batch size = 8 has been used.
- Underfitting observed.

Edge score distributions

#Sample = 53910, #Doublet = 323460, batch size = 8, Score distribution All Prediction Predict: FP Predict: TP

- "Predict: TP" : edges have target edge score = 1
- "Predict: FP" : edges have target edge score = 0

104

ROC curve

- ROC curves are shown with different batch size.
- Smaller batch size gives higher AUC.
- The best cases here is given by batch size = 8, with AUC = 0.92

Score distribution per graph

- Sum of edge scores per graph is shown.
- In target, only score = 0,2,4,6 are allowed since $e_{ij} = e_{ji}$ is always true.
- The predicted score, on the other hand, have also score = 1,3,5; this is because in some cases, score of $e_{ij} \neq e_{ji}$. This is possible as we didn't add $e_{ij} = e_{ji}$ as one of the input features of our network.
- However, this is a non-physical result. Since the edges, $e_{ij} = e_{ji}$ have to be always true as this is a physical doublet.

QUBO comparision

$$O(a,b,T) = \sum_{i}^{N} a_i T_i + \sum_{i}^{N} \sum_{j < i}^{N} b_{ij} T_i T_j$$

- Graphs with scores > 3 are selected
- $-1 \leq b_{ij} \leq -0.2$ is given by the pervious study.
- We are expecting similar distribution to the original QUBO.
- More investigation is needed for the distribution for GNN-generated QUBO in -0.85 to -0.25.

Application for the ATLAS dataset

Application for the ATLAS dataset

- We verified if track finding by annealing machines works in a realistic environment with the ATLAS dataset.
- Detector-hit information is taken from the dataset processed by the ATLAS software (<u>https://cds.cern.ch/record/2767187</u>), while the annealing tracking is done by other standalone software.
- This study has been performed independently from the previous GNN study.
- We used Fixstars Amplify Annealing Engine(AE) which was an annealing machine developed by Fixstars.
 - Perform simulated annealing using GPU(NVIDIA A100)
 - 262k bits, fully connected
- This time, <u>we used "doublets"</u> for bits.
 - When two doublets have close curvature in X-Y plane or close angle in R-Z plane, we give them low energy.
 - Doublets and double-pairs were selected before a QUBO building to reduce the size of QUBO.

$$H(a, b, D) = \sum_{i}^{N} a_{i}D_{i} - \sum_{i}^{N} \sum_{j < i}^{N} S_{ij}D_{i}D_{j} - \sum_{i}^{N} \sum_{j < i}^{N} W_{ij}D_{i}D_{j} + \sum_{i}^{N} \sum_{j < i}^{N} \zeta_{ij}D_{i}D_{j}$$

$$\cdot D_{i} : \text{Potential doublet}$$

$$\cdot a_{i} : \text{Bias weight which is depending on } N_{holes} \text{ in a doublet.}$$

$$\cdot S_{ij}, W_{ij} : \text{The coupling strength, depending on the } \Delta\left(\frac{1}{R}\right), \Delta\theta \text{ between } D_{i} \text{ and } D_{j}.$$

$$\cdot \zeta_{ii} : \text{The coupling strength, we give constant } (\zeta_{ii}=5).$$

Event display

- Reconstructed results with 200 muons/event MC sample generated with the ATLAS software.
 - 0.5 GeV < p_T < 10 GeV in 1/ p_T flat distribution, $|\eta| < 1.0$

X[mm]

• Layout of the ATLAS inner tracker

Track findings by annealing machines work successfully in a realistic environment.

Results with real data

- We applied this algorithm to real ATLAS data taken by non-physics random triggers.
- The efficiency is calculated w.r.t. the ATLAS offline tracks. The matching to the offline tracks is performed if reconstructed tracks with annealing machines share more than 50% of hits with the offline tracks.
- The annealing time was compared with MC sample(10 pions/event with pile-up 20).

- Our algorithm also works successfully with real ATLAS data.
- It is a good starting point to further explore the method.

Conclusions

- 2 type of studies are performed with the annealing tracking algorithm:
 - GNN application in Quantum Pattern Recognition
 - In order to make use of the GNN in the pre-processing stage of this algorithm, we performed an edgeclassification using a bi-directional graph made by simplified sample which only contain 4 hits.
 - The result indicated that it is possible but there are rooms to improve.
 - Application for the ATLAS dataset
 - Another study shows that the algorithm can also deal with real data collected from the ATLAS detector using low pileup (and no pileup) samples, in both MC and data.
 - Result looks promising and further development is under consideration.