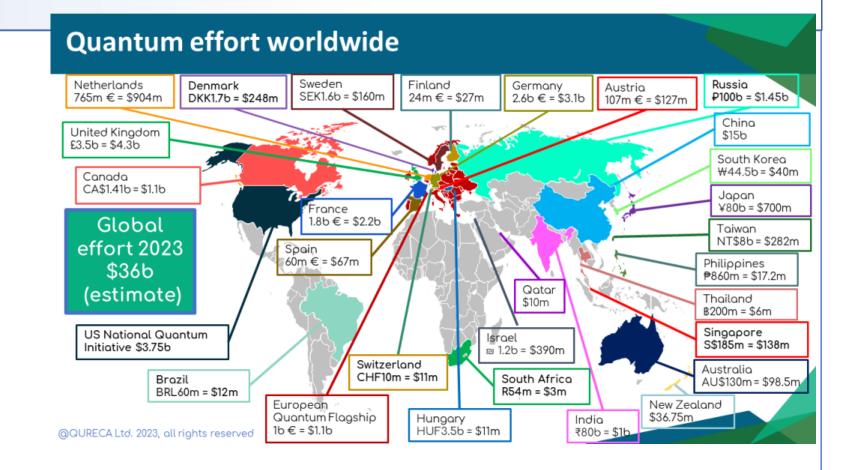


HEP Oriented Quantum Computing Platform in IHEP

Yujiang Bi, Shiyuan Fu, Qingbao Hu, Wei Sun, Lu Wang Institute of High Energy Physics(IHEP), CAS biyujiang@ihep.ac.cn & fusy@ihep.ac.cn


Why to Build Such A Platform?

Quantum computers have a significant acceleration advantage over electronic computing

- One of the most promising directions of scientific computing
- A possible solution of problems difficult for classical computers
- Over 25 countries/regions launched Quantum Initiatives
- Developing quantum programs has a relatively high barrier to entry

Platform Overview

Platform Architecture

A computing & simulation platform targeted for HEP

- Focusing on quantum computing in HEP analysis
 - Assist to explore quantum algorithm in LQCD , BES, LHAASO...
- Full-stack computing quantum platform including
 - **D** Frameworks, interactive GUI, Simulators and Assemblers
- Integrated with various interactive developing interfaces
 - Jupyter, composer and coder online
- A distributed heterogeneous computing platform

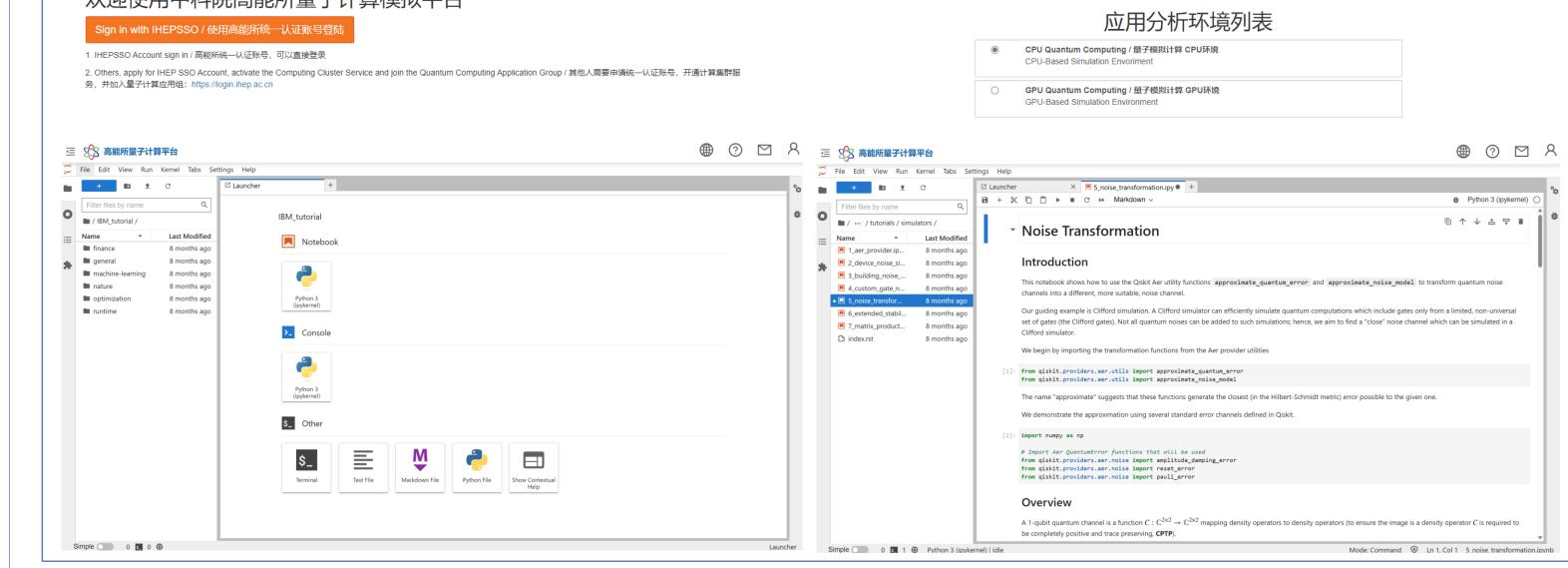
D Joint CPU/GPU resources, classical and quantum computing resources

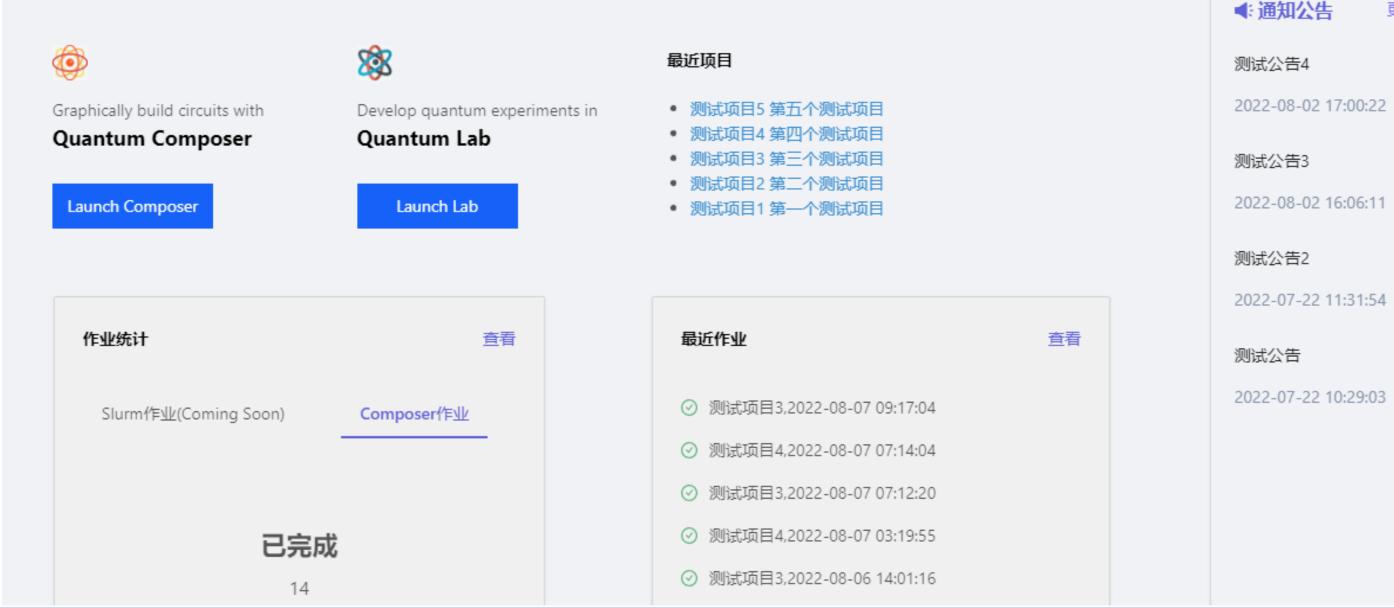
Dashboard

Default interface of cloud platform, including

Entries of main interfaces, monitoring and announcement \bigcirc M 8 🤄 😰 高能所量子计算平台

Management	Users Login Service	
Interfaces	User Portal Web User Programming Interface JupyterHub VS Code Online	
Platform	Quantum Simulators Universal Quantum Algorithms Modules	
Schedulers	Quantum Programming SDK Assembler Job Scheduling Job Scheduling System System	
Resources	Image: CPU GPU FPGA Classical Hardware Quantum Hardware Computing Resources	


Jupyter Interface


- Combined with IHEP SSO and AFS
- Two computing environments: CPU and GPU

Suitable for small-scale simulation computations

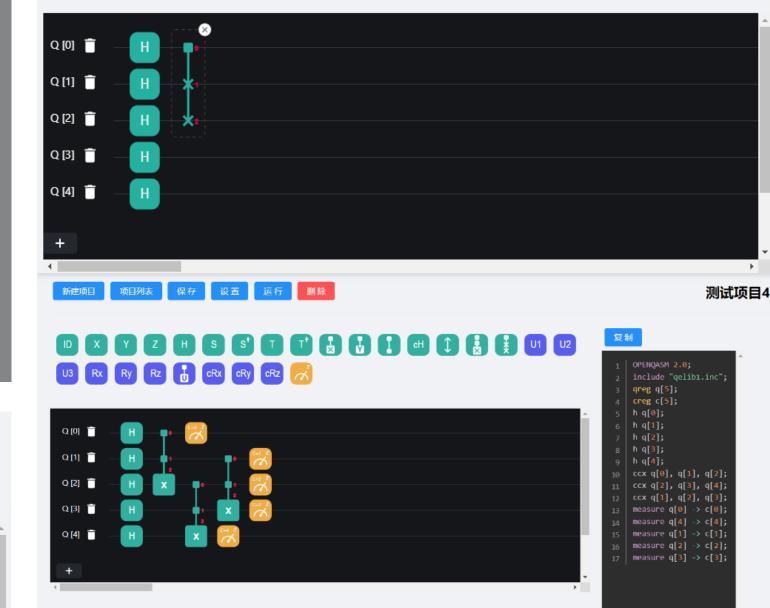
── ──────────────────────────────────	 Ξ S 高能所量子计算平台	⊕ ⑦ ⊠ A
🥌 f 風井支広を変形は広府 📜 🔁 Jupyterhub	🥌 作用任意点を影響点式A 作 Digger State Addition (1997) 「 Jupyterhub Home Token Admin	biyj 🕞 Logout

更多

Composer Interface

A drag-and-drop interactive developing interface

- Manage through project-based methodology
- Providing templates to help users get started quickly
- Five major sections
 - Gates, composer, taskbar, QASM section and display area


JupySlurm Plugin

A Python module that combines Jupyter and Slurm

- Allowing user to submit job from container to Slurm cluster
 - In a console or a Jupyter notebook
- Using Slurm Restful API to interact with Slurm

	<pre>usage: pyslurm [-h] [-s</pre>	<pre>> cli.py -h [SERVER]] [-p [PORT]] [-k] [-f [KRB5CC]] cmd [arg [arg]]</pre>
Providing a user client	positional arguments: cmd	Slurm subcmd
ss Slurm():		Args for subcmd
<pre>definit(self, host:str = "http://slurm06.ihep.ac.cn",</pre>		
<pre>port:int = 443, krb5:bool = True, krb5cc:str = ""):</pre>	optional arguments:	
if host is None or port is None:	-h,help -s [SERVER],server	show this help message and exit [SFR/FR]

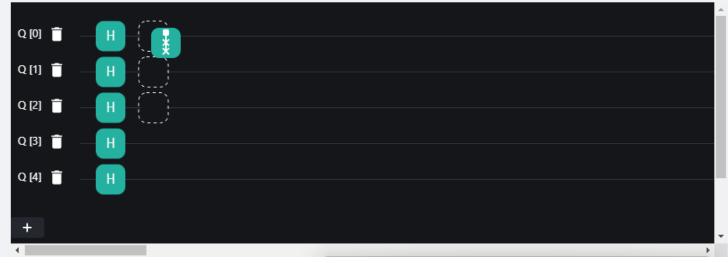
高能所量子计算平台	à	?
連项目 项目列表	保存 设置 运行 删除	
	创建新项目	
	项目名称:	
	测试项目4 备注:	
	第四个测试项目	
	Empty Project	
	Demo	
	取消 创建	

if host is None or port is None:	
raise ValueError("host and port cannot be both None")	
<pre>self.host:str = host</pre>	-
<pre>self.port:int = port</pre>	
<pre>self.token:Union[str,None] = ""</pre>	-
<pre>self.ttl:int = 0</pre>	-
<pre>self.token_tm:int = int(time.time())</pre>	

-s [SERVER],SELVEL [SERVER]
Restful Slurm API Server. Default: https://slurm06.ihep.ac.
-p [PORT],port [PORT]
Restful Slurm API Port. Default: 443
-k,krb5 KRB5 Authentication
-f [KRB5CC],krb5cc [KRB5CC]
KRB5CC file name

Content-Type":"application/json", 'X-SLURM-USER-NAME':self.user, 'X-SLURM-USER-TOKEN':self.token, "Connection": "Close"

Outlook


self.groups:List[int] = os.getgroups()

lass Slurm():

- Collaborating in quantum computing application
 - Quantum ML, quantum field simulation...
- Assist physicists in quantum simulation calculations
 - To improve the speed and efficiency of simulations
- Education and Training on Quantum Computing

CHEP 2023, 08-13 May 2023, Norfolk, VA, USA

Ry Rz 🔥 cRx cRy cRz 📈

