
Towards a hybrid quantum

operating system

9th May 2023, CHEP2023, Norfolk

Andrea Pasquale on the behalf of the Qibo collaboration

Why Quantum Computing in HEP?

LHC produces TB of data per second which need to

processed.

Currently we cannot keep up with the computational

resources required!

Quantum Computing (QC), especially Quantum Machine

Learning (QML), is a promising solution:

Efficient in high-dimensional quantum state

spaces

Potential computational speed-ups

Qubit representation offers better compression

Acceleration of classically expensive operations

(eigensolvers).

Nat Rev Phys 4, 143–144

Projected compute usage from ATLAS Software and

Computing HC-LHC Roadmap

https://www.nature.com/articles/s42254-022-00425-7

How can we start using Quantum Computing?

Is it possible to create from scratch a framework for all of this?

Introducing Qibo
Open-source full stack API for quantum simulation, hardware control and calibration

Simulation

Gate set abstraction

import numpy as np
from qibo.models import Circuit
from qibo import gates, set_backend

Set driver engine
set_backend("numpy")

c = Circuit(2)
c.add(gates.X(0))

Add a measurement register on both qubits
c.add(gates.M(0, 1))

Execute the circuit with the default initial state |00>.
result = c(nshots=100)

Change backend
set_backend("qibojit")

Circuit execution with new driver
result = c(nshots=100)

Qibo features

Definition of a standard language for the

construction and execution of quantum circuits

with device agnostic approach to simulation and

quantum hardware control based on plug and

play backend drivers.

A continuously growing code-base of quantum

algorithms and applications presented with

examples and tutorials.

Efficient simulation backends with GPU, multi-

GPU and CPU with multi-threading support.

A simple mechanism for adding new simulation

and hardware backend drivers.

2009.01845

https://arxiv.org/abs/2009.01845

High performance simulation

❌ Long computational times using naive approach (Numpy or TensorFlow) for circuits with large number of qubits.

✅ We need more sophisticated tools to be able to simulate a quantum circuits with more qubits!

2203.08826

https://arxiv.org/abs/2203.08826

Benchmark

All the benchmarks are available in qibojit-benchmarks.

https://github.com/qiboteam/qibojit-benchmarks

Qibolab
Automatic deployment of quantum circuits on quantum hardware

Motivation

How are gates implemented on a quantum computer?

By sending microwave pulses.

How do we control them?

Using FPGAs

→ We need both a pulse level API + drivers to interface

Qibo with different instruments.

Pulse API example

from qibolab import Platform
from qibolab.pulses import ReadoutPulse, PulseSequence

Define PulseSequence
sequence = PulseSequence()
Add some pulses to the pulse sequence
sequence.add(ReadoutPulse(start=0,
 amplitude=0.3,
 duration=4000,
 frequency=200_000_000,
 shape='Gaussian(5)'))

Define platform
platform = Platform("tii1q_b1")
Platform setup
platform.connect()
platform.setup()
platform.start()
Executes a pulse sequence.
results = platform.execute_pulse_sequence()
platform.stop()
platform.disconnect()

Drivers implemented

Currently Qibolab supports the following drivers:

Qblox

Quantum Machines

Zurich Instruments

FPGAs (based on Qick)

We also support local oscillators

RohdeSchwarz SGS100A

ERASynth

Introducing Qibocal
A reporting tool for calibration using Qibo

Motivation

Let’s suppose the following:

1. We have a QPU (self-hosted).

2. We have control over what we send to the QPU.

3. We know how to convert quantum circuits to pulses.

Can I trust my results? NO!

Characterization and calibration are an essential step to properly operate emerging quantum devices.

Calibration of RX pulse amplitude through a Rabi experiment through Qibocal.

Single Qubit Characterization: Pulse Level

Currently in Qibocal the following protocols are

implemented:

Standard RB

Simulataneous Filtered RB

XId RB

Single Qubit Characterization: Circuit Level

We are currently developing a suite for the development of the latest quantum benchmarking protocols

available in the literature.

2303.10397

Platform agnostic approach

Launch calibration routines easily

Live-plotting tools

Autocalibration (under development)

Reporting tools

https://arxiv.org/abs/2303.10397

Applications

Determination of parton distribution functions using QML 2011.13934

https://arxiv.org/abs/2011.13934

MonteCarlo event generator using QGAN

Style-based approach

2110.06933

https://arxiv.org/abs/2110.06933

Results with

Implementation largely hardware independent!

pp → tt̄

Outlook

We have presented Qibo, a simple full stack API capable

of doing

High performance quantum simulation: qibojit

Hardware control: qibolab

Hardware calibration: qibocal

Why should you choose Qibo?

Publicly available as an open source project

Modular layout design with the possibility of

adding

a new backend for simulation

a new platform for hardware control

Community driven effort

Many researchers are using it for HEP applications

https://github.com/qiboteam/qibojit
https://github.com/qiboteam/qibolab
https://github.com/qiboteam/qibocal

Thanks for listening!

Backup slides

Fitting PDFs using adiabatic evolution

Use quantum adiabatic machine learning for the determination of PDF and sampling.

2303.11346

https://arxiv.org/abs/2303.11346

Paramater Shift Rule on Hardware

Successfully performed a gradient descent on a QPU with a single using Parameter Shift Rule algorithm.

2210.10787

https://arxiv.org/abs/2210.10787

