
Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 1

Madgraph5_aMC@NLO on GPUs and vector
CPUs: experience with the first alpha release

CHEP, Norfolk, VA, 08 May 2023
https://indico.jlab.org/event/459/contributions/11829/

Laurence Field
Stephan Hageboeck

Stefan Roiser
David Smith
Jorgen Teig

Andrea Valassi
Zenny Wettersten

Olivier MattelaerTaylor Childers
Walter Hopkins
Nathan Nichols

Carl Vuosalo

https://indico.jlab.org/event/459/contributions/11829/

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 2

Motivation: Monte Carlo Event Generators in WLCG computing

https://doi.org/10.1007/s41781-021-00055-1

CERN-LHCC-2022-005

• HL-LHC computing needs expected to outgrow resource growth
–Need R&D on software to improve efficiency and port it to new resources, such as GPUs at HPC centres

• MC generators projected to use 10% - 20% of ATLAS/CMS WLCG CPU budget
–Many ways to speed them up – see the HEP Software Foundation (HSF) Generator WG review paper
– Ideal candidates to exploit data parallelism in GPUs (SIMT) and CPUs (SIMD)?

https://doi.org/10.1007/s41781-021-00055-1
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://doi.org/10.1007/s41781-021-00055-1

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 3

Motivation: Monte Carlo Event Generators in WLCG computing

https://doi.org/10.1007/s41781-021-00055-1

CERN-LHCC-2022-005

• HL-LHC computing needs expected to outgrow resource growth
–Need R&D on software to improve efficiency and port it to new resources, such as GPUs at HPC centres

• MC generators projected to use 10% - 20% of ATLAS/CMS WLCG CPU budget
–Many ways to speed them up – see the HEP Software Foundation (HSF) Generator WG review paper
– Ideal candidates to exploit data parallelism in GPUs (SIMT) and CPUs (SIMD)?

https://doi.org/10.1007/s41781-021-00055-1
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/
https://doi.org/10.1007/s41781-021-00055-1

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 4

What is a MC ME generator? A simplified computational anatomy

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MONTE CARLO
INTEGRATION

MONTE CARLO
UNWEIGHTING

UNWEIGHTED EVENTS
{EVT_i , W_i=1}

WEIGHTED EVENTS
{EVT_i , W_i}

CROSS-SECTIONS etc...
(AVG W_i, MAX W_i)

PHASE SPACE
SAMPLING

OPTIMISATION

MC MATRIX
ELEMENT

GENERATOR
(e.g. MG5aMC)

+ optional event cuts

HADRONISATION
AND DECAY

PARTON
SHOWERS

PARTICLE
FILTERING

DETECTOR
SIMULATION

SHOWERING AND
HADRONIZATION

GENERATORS
(e.g. PYTHIA)

(GEANT4)

(NB: “Matrix Element” is an
element of the scattering matrix;
not the linear algebra concept!)

Monte Carlo sampling: randomly generate and process
MANY different events (“phase space points”)

This can be parallelized (SIMT/SIMD and multithreading)

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 5

ME generator data parallelism: design for lockstep processing!
• In MC generators, the same function is used to compute the Matrix Element for many different events

–ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
–Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads)
Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data)
Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU
SIMT CPU

SIMD

S
ee

 th
e

N
V

id
ia

 V
ol

ta
 w

hi
te

pa
pe

r

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 6

Madgraph5_aMC@NLO (MG5aMC)
• One of the workhorses for event generation in ATLAS and CMS!

• MG5aMC production version is in Fortran
–Outer shell: Madevent (random sampling, integration and event generation + I/O, multi-jet merging...)
–Matrix Element (ME) core

• MG5aMC generates ME code for each physics process
• MEs may take >95% of the CPU time for complex processes (e.g. gg®t ̅tggg)
• High potential for acceleration on CPUs / GPUs

https://doi.org/10.1007/JHEP07(2014)079

https://doi.org/10.1007/JHEP07(2014)079

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 7

MG5aMC and the madgraph4gpu project
• madgraph4gpu: speed up Matrix Element calculation in MG5aMC on GPUs and vector CPUs

–Collaboration of theoretical/experimental physicists with software engineers – born in the HSF generator WG
–More history and details in vCHEP2021 and ICHEP2022

• Two parallel approaches to reimplement the ME calculation
– (1) “CUDACPP”, our initial single-code CUDA/C++ back-end targeting NVidia GPUs and SIMD on vector CPUs
– (2) Portability Frameworks (PFs: Alpaka, Kokkos, SYCL); added to gain experience with portability

https://doi.org/10.1051/epjconf/202125103045 https://doi.org/10.22323/1.414.0212

PoS(ICHEP2022)212

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://doi.org/10.22323/1.414.0212
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 8

MG5aMC: old and new architecture designs

1. STANDALONE
(TOY APPLICATIONS)

MULTI-EVENT API

2. NEW MADEVENT
(GOAL: LHC PROD)
MULTI-EVENT API

OLD MADEVENT
(CURRENT: LHC PROD)

SINGLE-EVENT API

First we developed
the new ME engines

in standalone applications

(Amdahl...)

SCALAR:
NEW

BOTTLENECK?

PARALLEL:
MUCH FASTER!

MATRIX ELEMENT:
CPU BOTTLENECK
IN OLD MADEVENT

MATRIX ELEMENTS

CUDA/C++ or PFs:
cuRAND

CUDA/C++ or PFs:
RAMBO

CUDA/C++ or PFs:
MEKERNELS

MOMENTA

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

CUDA/C++ or PFs:
MEKERNELS

MOMENTA

MATRIX ELEMENTS

Then we modified the existing
all-Fortran MadEvent

into a multi-event framework
and we injected the new MEs into it

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 9

• Data-centre GPUs such as the Tesla A100 speed up the matrix-element calculations significantly
– Simpler GPUs lack double-precision performance
– So far, Madgraph only works reliably in double-precision mode

• FORTRAN parts limit total achievable speed up (Amdahl’s law)
– Especially for simple SM processes
– E.g. phase-space sampling, generation of momenta, unweighting

MadEvent + CUDA Speed up

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

CUDA/C++ or PFs:
MEKERNELS

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 10

What about non-NVidia architectures?

• Initially, ported madgraph C++ matrix elements to CUDA
• Also tested SYCL, as well as Kokkos / Alpaka (discontinued)
• SYCL:

– Similar performance as for direct CUDA
– Portability to AMD / Intel GPUs

• Good scaling observed on Aurora supercomputer testbed “Sunspot”

The XE-HPC results are from early silicon devices and early oneAPI DPC++ software stack. The GPUs are currently used at the Argonne Leadership Computing Facility and other customer sites
to prepare code for future Intel data center GPUs, including those to be used in the Aurora exascale supercomputer.

Intel AMD NVidia

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 11

What about non-NVidia architectures?

• Initially, ported madgraph C++ matrix elements to CUDA
• Also tested SYCL, as well as Kokkos / Alpaka (discontinued)
• SYCL:

– Similar performance as for direct CUDA
– Portability to AMD / Intel GPUs

• Good scaling observed on Aurora supercomputer testbed “Sunspot”

The XE-HPC results are from early silicon devices and early oneAPI DPC++ software stack. The GPUs are currently used at the Argonne Leadership Computing Facility and other customer sites
to prepare code for future Intel data center GPUs, including those to be used in the Aurora exascale supercomputer.

Intel AMD NVidia

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 12

MadEvent: FORTRAN ßà FORTRAN+CUDA

• Old MadEvent spent
almost all time in
matrix-element
calculations

Fortran only

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 13

Madevent: FORTRAN ßà FORTRAN+CUDA

• Old MadEvent spent
almost all time in
matrix-element
calculations

• With CUDA, the matrix
elements are about 1%
of the total run time

• Previously unimportant
steps such as
unweighting limit the
speed up

Fortran+CUDA

mg4gpu
CUDA

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 14

Improving the Madevent Side

• Improved handling of MLM

• GPU-assisted unweighting
–Use GPU to for parallel weight

computation
–Helps FORTRAN unweighting

routine to discard events
faster

• More investigation on
madevent side possible Matrix elementsUnweighting

Before, FORTRAN only

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 15

MadEvent with vectorized C++ for gg®t ̅tgg (on a single CPU core)

ME speedup ~ x8 (double) and x16 (float) over scalar Fortran
Our ME engine reaches the maximum theoretical SIMD speedup!

Overall speedup so far~ x6 (double) and x10 (float) over scalar Fortran
(Amdahl’s law)

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 16

Work-In-Progress, future plans, ideas...

• More performance for matrix elements in CUDA?
–Smaller kernels: compiler optimizations, data placement, thread scheduling …
–Split Feynman diagrams and color algebra
–Tensore cores for color algebra computations (e.g. cublas)

• More performance for MadEvent
–Parallel execution, heterogeneous workflow, vectorisation
–Algorithmic optimizations (profiling)

• Functional improvements and longer-term plans
–Support for NLO QCD processes
–Event-by-event ME reweighting (and derivatives?) à See talk by Z. Wettersten
–Test LHAPDF on GPU
–Single-precision floating point?

https://indico.jlab.org/event/459/contributions/11850/

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 17

The “alpha release”

• First ”gridpacks” generated for testing in LHC experiments

• Upstream madgraph4gpu GPU & SIMD code generation to mg5amcnlo
– Including extra cross-checks that the LHE color IDs are those required for parton showers

• Test and fix any bugs in full pp collision simulation
– Implement weak, SUSY, BSM processes

• Stay tuned! J
–We will be happy to help your experiment in the integration!
–NB: This will use a new Fortran version too (multi-event API). Needs statistical validation...

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 18

Conclusions

• The Matrix Element calculation in ANY ME event generator can be efficiently parallelized using SIMD or GPUs
• For Madgraph, we get:

–SIMD: Speed ups of 6x for AVX512
–GPU: 20x to 80x depending on the process using Tesla A100

• Our reengineering of MG5aMC is a functional alpha release for LO QCD / EM processes, but weak interactions
need more work

• Please get in touch if you want to test the gridpacks

• Using SYCL, we get similar performances to CUDA and we may also run on AMD or Intel GPUs
• Tests on supercomputer testbeds show good scaling

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 19

Acknowledgements

• This research used resources of the Argonne Leadership Computing Facility, which is a U.S.
Department of Energy Office of Science User Facility operated under contract DE-AC02-
06CH11357, and the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

• We gratefully acknowledge the use (under PRACE proposal PRACE-DEV-2022D01-022) of the
JUWELS supercomputer and other computing resources provided and operated by the Jülich
Supercomputing Centre at Forschungszentrum Jülich.

• We gratefully acknowledge the use (under ISCRA-C project MG5A100) of computing resources
provided and operated by CINECA.

• We thank the organizers and our mentors at the GPU Hackathon in CSCS Lugano in September 2022.

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 20

BACKUP

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 21

• User chooses process, MG5aMC determines Feynman diagrams and generates code
– Initially Fortran (default), C++, or Python
– More complicated processes produce larger code

• Strategy: modify code-generating code (add CUDA, improve C++ backend)
– (1) Start simple: bootstrap with e+e-®µ+µ- (two diagrams, few lines of C++ code)
– (2,3) Add CUDA and improve C++, port upstream to code generator (Python)
– (4) Generate more complex LHC processes 𝑔𝑔® 𝑡 ̅𝑡, 𝑡 ̅𝑡𝑔, 𝑡 ̅𝑡𝑔𝑔
– Add missing functionality, fix issues, improve performance, iterate

Code Generator and Transformation to CUDA

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 22

Helicity amplitudes – same code in CUDA and in vectorized C++

• Old slide! The new code is
different, the idea is the same!

• Formally the same code for
CUDA and scalar/vector C++

–hide type behind a typedef
–add a few missing operators

SIMD in CUDA/C++ uses
compiler vector extensions!

Flexible design: being reused
also for vectorized SYCL!

Automatically
generated!

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 23

Reweighting

• Advantages of reweighting: savings in computing costs (no detector simulation), fewer statistical fluctuations

• In practice for MG5AMC: read in an LHE file, add weights, write back the modified LHE file
– Will use the new matrix element engine in CUDA/C++
– For further details and a status report: Zenny’s upcoming poster at CHEP 2023!

• Theoretical and technical challenges
– NLO reweighting (see O. Mattelaer, https://arxiv.org/abs/1607.00763)
– Coverage of phase space in the new parameter set
– Reweighting for a given event-by-event helicity and color

Z. Wettersten (+ OM, SR, AV, R. Schoefbeck)

1. Generate signal sample at qref, with wi(qref)=1
(By definition, background does not depend on q)

2. Full detector simulation
(MC truth event properties xi

(true) ® observed event properties xi)

3. Reweight each event by matrix element ratio

Old technique, renewed interest!

https://arxiv.org/abs/1607.00763

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 24

All MadEvent functionalities have been integrated over time

Most of these required some changes to the input/output API of our Fortran-to-CUDA/C++ “Bridge”

• Helicity filtering – at initialization time, compute the allowed combinations of particle helicities
–This is computed in CUDA/C++ using the same criteria as in Fortran

• “Multi-channel” – single-diagram enhancement of ME output
–This is the specificity of the MadEvent sampling algorithm (Maltoni Stelzer 2003)

• Event-by-event running QCD coupling constants as(Q2)
–The scale is currently computed in Fortran from momenta and passed to the CUDA/C++ for each event
–No support yet for weak interaction / BSM / SUSY

• Event-by-event choice of helicity and color in LHE files
–Pass two additional random numbers per event from Fortran to CUDA/C++, retrieve helicity and color
–NEW (January 2023)! This was the last big missing physics functionality (showstopper to a release)

• We now get the same cross section AND the same LHE files (within numerical precision) in Fortran and CUDA/C++

https://doi.org/10.1088/1126-6708/2003/02/027

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 25

CUDA vs SYCL on NVidia A100

• SYCL and CUDA implementations have ~similar performances but
–SYCL seems better for less complex processes
–CUDA seems better for more complex processes

• These are very recent results, which are still being digested (WIP!)
– It will be very interesting to understand more in detail what goes on

We plan to also compare more systematically the CUDACPP and SYCL performances
on CPUs (vectorization, multi-core), but it will take time and optimization tweaks... WIP!

PRELIMINARY!
N. Nichols, T. Childers (SYCL)
J. Teig (tests/plots)

𝐠𝐠®𝐭 ̅𝐭

𝐠𝐠®𝐭 ̅𝐭𝐠

𝐠𝐠®𝐭 ̅𝐭𝐠𝐠

𝐠𝐠®𝐭 ̅𝐭𝐠𝐠𝐠

CUDA < SYCL

CUDA < SYCL

CUDA > SYCL

CUDA > SYCL

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 26

gg→𝒕𝒕̅gg
(float)

gg→𝒕𝒕̅gg
(float)

ME throughput in C++ for gg®t ̅tgg (on all the cores of a CPU)

• Most previous results were single-thread peak throughputs

• Large SIMD speedups are also confirmed when all CPU cores are used
– AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)
– Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)
– Aggregate MEs throughput from many identical processes using the standalone application (HEP-workload Docker container)

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 27

MEs in MadEvent: CUDA vs SYCL for gg®t ̅tgg

• ME throughput only - SYCL comparable to CUDA but somewhat lower

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 28

Some ideas for heterogeneous processing

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

• Blue curve: one single CPU process using the GPU
– For gg→𝑡 ̅𝑡gg, you need at least ~16k events to reach the throughput plateau

• Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
– Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU
– The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced
– (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Throughput variation as a function of
GPU grid size (#blocks * #threads)

This is the number of events
processed in parallel in one cycle

Nvidia V100 GPU
Silver 4216 4-core CPU

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 29

MadEvent/C++ for gg®t ̅tggg (on a single core)

• Lower overhead of scalar MadEvent in gg®t ̅tggg than in gg®t ̅tgg : higher overall throughput speedup x13!
• Mixed floating-point precision (single precision color algebra) is 5-10% better than double

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 30

In practice in MG5aMC: use helicity amplitudes and QCD color decomposition

1. (for each helicity l) compute partial amplitudes Jf for each color ordering permutation f (sum diagrams relevant to f)

2. (for each helicity l) compute the sum over colors as the quadratic form JCJ* using the constant color matrix C

3. sum over helicities [Example for 𝑔𝑔® 𝑡 ̅𝑡𝑔𝑔𝑔: 128 helicities (before and after filtering)]

Each step computes many events 𝒑 in parallel! CPU: 1 SIMD event-vector at a time. GPU: 1 event per thread.

Inside the ME calculation: Feynman diagrams, colors, helicities
Given the momenta 𝑝⃗ of initial+final partons in one specific event
Sum over all helicity combinations l of initial+final partons
Sum over all color combinations c of initial+final partons
Include all Feynman diagrams d allowed for the given l and c

Example for 𝑔𝑔® 𝑡 ̅𝑡𝑔𝑔𝑔: 1240 Feynman diagrams (using helicity amplitudes)
This takes ~40% of the CPU time for this process

Example for 𝑔𝑔® 𝑡 ̅𝑡𝑔𝑔𝑔: 120 color ordering permutations, 120x120 matrix
This takes ~60% of the CPU time for this process

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 31

MORE BACKUP SLIDES

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 32

Matrix element integration in MadEvent: detailed results (CPU)

TIME Total =
MadEvent (scalar)
+ MEs (parallel)

TIME
MEs (parallel)

TIME
MadEvent (scalar)

THROUGHPUT
MadEvent + MEs
(within madevent)

THROUGHPUT
MEs

(within madevent)
THROUGHPUT

MEs
(within standalone
test application)

In
te

l G
ol

d
61

48
 C

PU
 (J

uw
el

s
C

lu
st

er
 H

PC
) (81952 MEs)

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 33

8k events
per GPU grid

16k events
per GPU grid

2. INCREASE GPU
GRIDS (REDUCE

CPU MEMORY) TO
INCREASE SPEEDUP

Matrix element integration in MadEvent: detailed results (GPU)

TIME
MadEvent (scalar)

1. REDUCE THIS TO
INCREASE SPEEDUP

ggttgg GPU MEs
speedup is lower than

eemumu (higher
register pressure)
3. SMALLER GPU

KERNELS TO
INCREASE SPEEDUP

N
Vi

di
a

V1
00

 G
PU

 +
 In

te
l S

ilv
er

 4
21

6
C

PU
 (C

ER
N

)

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 34

Matrix element integration in MadEvent
Replace Fortran MEs by cudacpp (or PFs) MEs in Madevent (keep the same user interface!)

Linking Fortran and C++ has been easy. As expected, the two main issues have been, instead:
–1. Moving Madevent from single-event to many-event (functional reengineering of the algorithm)

• Now also an active area of performance optimizations (next slides: GPU grid and CPU RAM; CPU time and Amdahl...)
–2. Debugging functional issues caused by hidden inputs and outputs, e.g. coming from Fortran common blocks

MANY events
(momenta)

SINGLE event
(momenta)

COMMON
BLOCKS

(hidden inputs
and outputs?)

PURE
FUNCTIONS
(clear inputs
and outputs)

REENGINEER MADEVENT

ADAPT CUDACPP (and PFs)

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 35

Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates
- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)
- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code
(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL
(since end 2021)

OLD MODEL
(2020- early 2021)

Now using upstream MG5AMC from
https://github.com/mg5amcnlo !

https://github.com/mg5amcnlo/mg5amcnlo/tree/3.1.1_lo_vectorization

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 36

Portability Frameworks (PFs)
(2) Second line of development: MEs on PFs

• PFs allow writing algorithms once and running on many
architectures with some hardware-specific optimizations

• CUDA code can only run on NVidia GPUs, while Kokkos,
Alpaka, and Sycl[Intel] codes can run on most hardware

• In “cudacpp”, #ifdef directives separate code branches for
GPU and CPU code during compilation (but these are very
few: only kernel launching and memory access, not MEs)

• With PFs, the algorithm is typically the same, but the
compilation occurs once per architecture type

• PFs often use templating to handle data types and hardware
configuration and function lambdas or pointers for passing
kernels (the cudacpp plugin has many of these, too)

• PFs still require user to think about “host” vs “device”

“cudacpp” example of compiler directives

Kokkos example of Templating & lambda

Kokkos example of Memory Management

For GPU

For CPU

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 37

EVEN MORE BACKUP SLIDES

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 38

Madgraph5_aMC@NLO on GPUs and vector CPUs: experience with the first alpha release S. Hageboeck – CHEP, Norfolk, VA, 08 May 2023 39

