
Fast, high-quality PRNG for

heterogeneous computing

Marco Barbone, Georgi Gaydadjiev, Alexander Howard, Wayne Luk, George Savvidy,

Konstantin Savvidy, Andy Rose, Alexander Tapper

m.barbone19@imperial.ac.uk

Monte Carlo simulations

2https://doi.org/10.22323/1.390.0009

Over 50% is required by Monte Carlo related workloads

Motivation

GPUs/FPGAs RNGs are:

– Slow and high-quality

– Fast and low-quality

– In the GPU case, closed-source

3

There is no middle-ground

https://docs.nvidia.com/cuda/curand/index.html

MixMax RNG

It is a high-quality generator suitable for MC simulations

Quality, speed tunable based on state-size

Even small state size offers high quality numbers

It offers a seeding mechanism that guarantees no collisions between streams

Used in CLHEP & Geant4 (default)

4https://doi.org/10.1051/epjconf/201921402012

Goal

Accelerate MixMax and compare the performance against state-of-the-art RNGs

Provide a reliable RNG for Monte Carlo simulations

5

FPGA-VHDL design

• VHDL-2008

• 62 SLOC

• Clear interface

• Fully pipelined, 100% duty-cycle

6

Experimental Setup

• Xilinx Ultrascale+ FPGA

• Vivado 2020.2

• Default settings

7

Performance

• Achieves 300 MHz

• Requires 550 LUTs
– c.f. 523k available in KU15P, 1.75M available in VU13P

• This is 50% of the Mersenne Twister resources

• or 25% of the Mersenne Twister resources per output bit

8https://doi.org/10.1145/272991.272995

GPU C++/CUDA design

• Each thread contains an RNG, state is not shared

• GPU is seeded with 128 bits, the thread id is concatenated to generate

different streams

• Only 128 bits needs to be transferred to the GPU

• The user can change this behavior

• Clear C++ interface

9

Experimental setup

• NVIDIA 3090 Ti

• nvcc 11.8

• g++ 9.4.0

10

Validation

Compared against the original implementation

Test took ~3 months (server crashed due to blackout....)

Results never diverged

11

Performance

12

Parameters:
Threads Blocks Parallelism

128 984 125,952

iteration = generating

125,952 numbers

Algorithm time (ms) time/it (ns) % vs mixmax8 Throughput (GB/s)

Philox4_32_10 23144 10.78 -7.03 87074

MRG32k3a 15203 7.08 -38.93 132555

XORWOW 23206 10.81 -6.78 86841

MixMaxGPU<240> 55294 25.75 122.11 36446

MixMaxGPU<17> 30800 14.34 23.72 65430

MixMaxGPU<8> 24895 11.59 0 80949

[ref]

[ref]

[ref]

[ref]

[ref]

[ref]

https://doi.org/10.1145/2427023.2427029
https://doi.org/10.1145/2063384.2063405
https://doi.org/10.1145/2714064.2660195
https://doi.org/10.1016/j.cpc.2015.06.003
https://doi.org/10.1016/j.cpc.2015.06.003
https://doi.org/10.1016/j.cpc.2015.06.003

Against Mersenne twister for GPU (MTGP32)

13

Threads Blocks Parallelism

256.00 128.00 32,768
Parameters iteration = generating

32768 numbers

Algorithm time (ms) time/it (ns) % vs mixmax8 speedup Throughput (GB/s)

MTGP32 81161 37.79 1341.84 1 6459

Philox4_32_10 7803 3.63 38.62 10 67190

MRG32k3a 5092 2.37 -9.54 16 102963

XORWOW 7731 3.60 37.34 10 67816

MixMaxGPU<240> 15996 7.45 184.17 5 32776

MixMaxGPU<17> 6075 2.83 7.92 13 86302

MixMaxGPU<8> 5629 2.62 0 14 93140

MixMax is 14 times faster than Mersenne Twister on GPU

25% of the Mersenne Twister resources per output bit on FPGA

Seeding is easier and faster (128 bits, compared to O(KB))

MixMax has the potential to become de-facto the standard RNG on any platform

Suitable for ML & MC due to parallelism, efficiency and quality

Future work: Delivered via CLHEP or standalone repository

Conclusion

14

Backup

What is MixMax?

The MIXMAX generator is a family of pseudorandom number generators (PRNG)

and is based on Anosov C-systems (Anosov diffeomorphism) and Kolmogorov K-

systems (Kolmogorov automorphism).

https://doi.org/10.1016/j.cpc.2015.06.003

What is MixMax?

• The MIXMAX generator is a family of pseudorandom number generators

(PRNG) and is based on Anosov C-systems (Anosov diffeomorphism) and

Kolmogorov K-systems (Kolmogorov automorphism).

• It is a very good PRNG

• Used in CLHEP & Geant4 (default)

https://doi.org/10.1051/epjconf/201921402012

	Default Section
	Slide 1: Fast, high-quality PRNG for heterogeneous computing
	Slide 2: Monte Carlo simulations
	Slide 3: Motivation
	Slide 4: MixMax RNG
	Slide 5: Goal
	Slide 6: FPGA-VHDL design
	Slide 7: Experimental Setup
	Slide 8: Performance
	Slide 9: GPU C++/CUDA design
	Slide 10: Experimental setup
	Slide 11: Validation
	Slide 12: Performance
	Slide 13: Against Mersenne twister for GPU (MTGP32)
	Slide 14: Conclusion
	Slide 15: Backup
	Slide 16: What is MixMax?
	Slide 17: What is MixMax?

