
KServe inference extension for an FPGA
vendor-free ecosystem

Diego Ciangottini **

On behalf of the development team The team:
● Giulio Bianchini *
● Mirko Mariotti *
● Daniele Spiga **
● Loriano Storchi **,***
● Giacomo Surace **

* **

Sezione di Perugia

D.Ciangottini - ciangottini@infn.it - CHEP2023

Foreword

“Can we think of a way to manage a declarative access to FPGA resources?”

● Abstracting the vendor-specific parts of firmware
● Automatically synthesize FPGA firmware from a generic ML model

Result of the integration of two in-house expertise domains:

● FPGA programming
○ Next slide - building and loading firmware in a vendor-agnostic way

● Cloud-native solutions for scientific computing at INFN
○ Provisioning UI for data analysis on demand

2

● Machine Learning remote inference on FPGA
○ a first endeavour where the presented activity has been initiated
○ nevertheless it is hopefully extensible to more generic use cases

The use case

mailto:ciangottini@infn.it

D.Ciangottini - ciangottini@infn.it - CHEP2023

ML Inference on FPGA

Starting from high-level code and standard ML framework,
with HLS tools like BondMachine (next slide) and hls4ml,
get the firmware implementations of machine learning
algorithms

The machine learning model is trained with
standard frameworks and synthesized in FPGA as
a graph of heterogeneous and interconnected
processors.

● Optimized resource usage
○ lower resource usage handling the numerical

precision as needed
● Vendor independent

○ build firmware for different boards and
different vendors

● User-friendly
○ automation mechanisms make firmware

synthesis easy and accessible

Implement customized and parallel architectures tailored to specific ML models, resulting in faster
processing speeds and lower power consumption compared to traditional CPUs or GPUs.

High level

Low levelFirmware

Also available as a
building engine

3

mailto:ciangottini@infn.it
https://fastmachinelearning.org/hls4ml/

D.Ciangottini - ciangottini@infn.it - CHEP2023

Building firmwares experience: some references
The BondMachine is an open source (https://github.com/BondMachineHQ) software ecosystem for the dynamical
generation of computer architectures that can be synthesized on FPGA.

- High level programming language (Golang) for both the hardware and software

- Computational graph and Machine Learning Models synthesis

http://bondmachine.fisica.unipg.it/

4

History and Major Highlight

- InnovateFPGA 2018 Iron Award,

Grand Final at Intel Campus (CA)

USA

- Invited lectures at FPGA

workshops ICTP 2019 and 2022

- Golab 2018 talk and ISGC 2019

PoS

- Article published on Parallel

Computing, Elsevier 2022

DOI:10.22323/1.351.0020

mailto:ciangottini@infn.it
https://github.com/BondMachineHQ/BondMachine
https://indico.ictp.it/event/8680/
https://indico.ictp.it/event/9933/
https://www.sciencedirect.com/science/article/pii/S0167819121001150
https://www.sciencedirect.com/science/article/pii/S0167819121001150
https://www.sciencedirect.com/science/article/pii/S0167819121001150

D.Ciangottini - ciangottini@infn.it - CHEP2023

Bring it to cloud level: why?

So we “know” how to build firmware for ML inference in a vendor agnostic way. Can we
integrate it with cloud-native inference as-a-service solution to get any advantage?

● Ease of usage and flexibility
○ Being able to deploy an inference algorithm on FPGA without caring for “where” the resources are
○ Accessing ML predictions from a remote computing resource without having in place any

specialized hardware or software piece
■ At the cost of increased latency → to be carefully evaluated case by case

○ Sharing the access to the same model predictions with other collaborators
● Democratic access and management

○ Leveraging cloud/k8s native tools, you can reuse a well established way to orchestrate the
bookkeeping and distribution of the payloads

● Easy Prototyping
○ Automation of the build and load process -> the framework take care of vendor specific details

5

mailto:ciangottini@infn.it

D.Ciangottini - ciangottini@infn.it - CHEP2023

Bring it to cloud level: how?

The idea is to put our experience at INFN to good use:

● Cloud tools experience at INFN Cloud
○ In particular on automation and integration of services on

Kubernetes
● The remote inference still an open field on many

aspects, regardless we started from one of the
main emerging ecosystems for ML → Kubeflow

○ KServe in particular is the component responsible for
providing inference endpoint as-a-Service

6

mailto:ciangottini@infn.it
https://www.kubeflow.org/docs/
https://kserve.github.io/website/0.10/

D.Ciangottini - ciangottini@infn.it - CHEP2023

Implementing a KServe FPGA extension

We started with a simple workflow in mind:

1. Train your model with your preferred
framework (e.g. TF)

2. Store the model on a remote storage
a. S3 storage is the one used for our tests

3. Deploying the same model on a
remote FPGA via a user friendly UI

4. Get back the details of the endpoint to
interact with

a. Either via HTTP or grpc protocols

7

mailto:ciangottini@infn.it

D.Ciangottini - ciangottini@infn.it - CHEP2023

Kserve extension implementation

The main components that we developed are:

● Custom WebUI to hide complexity to the user
○ A Kubeflow managed solution exists, we are

planning to integrate this work eventually
■ We need additional metadata to be passed

(e.g. board model, provider, hls engine etc)
● Translate a model load request into

conditional actions
○ Load the bitstream file from the remote location

directly
■ Pre built by the user on its own

○ building a firmware “seamlessly” on an external
building machine

● Eventually load the firmware on the FPGA
board via the development of a grpc server
installed on the machine that have access to
the board

8

We tested workflows for both small and ML
board (ebaz4205, zedboard, alveo u50)

mailto:ciangottini@infn.it

D.Ciangottini - ciangottini@infn.it - CHEP2023

Where are we…

We have validated an end to end workflow
with a generic ML algorithm. With the following
steps:

1. Load the model description to an S3 bucket
2. Report the model URL and name in the

WebUI
a. Selecting HLS engine (BM in this case)

3. Wait for the build server to build and store
your firmware for the available FPGAs

a. Store back the firmware on S3 bucket for further
reuse

b. Load the created firmware on a FPGA
4. Publish the endpoint to send the prediction

requests to and then do your prediction.

9

mailto:ciangottini@infn.it

D.Ciangottini - ciangottini@infn.it - CHEP2023

What’s next?
1. FPGA bookkeeping (at K8s level) is one of the high priority target in the development

a. Essentially make use of existing device plugins
2. Also, this work is enabling an approach to firmware building and management via CLI

a. Docker-like hopefully?
i. bond build mymodel.json --model XXX --produced xilinx -t dciangot/mymodel:v2

3. Definition of an OCI artifact spec allowing for storing model on compatible container registries:
a. bond push ghcr.io/dciangot/mymodel:v2

4. Although not in the initial target, can we think of leveraging the kserve extension also for use
cases beyond inference?

a. E.g. I want to test my algorithm on a FPGA board that is somewhere shared with other people
b. Loading firmware and spawn jupyterlab container with on the machine with direct access to the pre-programmed FPGA

5. Systematic measurements of performances at the various stage of the chain
a. monitoring inference time at different layers (cycles, FPGA server and predictor machine etc) → often a useful feedback

for who is developing the model

Plenty of opportunities for participating! Don’t hold back if interested.

 https://github.com/BondMachineHQ/kserve-bond-extension

http://bondmachine.fisica.unipg.it/

10
Discord channel for post talk
discussion/setting up a chat.

mailto:ciangottini@infn.it
https://github.com/opencontainers/artifacts
https://github.com/BondMachineHQ/kserve-bond-extension
http://bondmachine.fisica.unipg.it/
https://discord.gg/Xzt9Kaay

Backup

11

D.Ciangottini - ciangottini@infn.it - CHEP2023

Why KServe

● Kubeflow has a wide community and a
fairly complete toolset for ML
workflows

○ A Kserve extension will make us compatible
with all of that

● KServe already support a variety of
prediction engines (Tensorflow,
Pytorch, sklearn, xgboost, ONNX, NVidia
etc..)

○ This is an added value, since you have all of
your models in a single interface

● Easy plugin mechanism for the
inference service

○ built with extension in mind
○ literally just a handful of methods to be

customized as you need: load, predict, cancel

12

mailto:ciangottini@infn.it

