

Evaluation of ARM CPUs for IceCube available through GKE (Google Kubernetes Engine)

Igor Sfiligoi, Frank Würthwein – UCSD

David Schultz, Benedikt Riedel - University of Wisconsin Madison

Benchmark setup

- Google offered some credits in 2022 to IceCube to be used on the Google Kubernetes Engine (GKE)
 - A managed Kubernetes setup on the Google Compute Cloud
- Google has several generations of CPUs available
 - x86 from both Intel and AMD
 - in both Hyper-threaded and not mode
 - ARM CPUs from Ampere Computing (no hyper-threading)
- IceCube's main CPU-heavy application is CORSIKA
 - Cosmic air shower simulator
 - x86 binaries available on CVMFS
 - ARM binaries compiled in GKE

CPUs used

- GKE being a Cloud platform, a lot of details are hidden
- But this is what can be observed:
 - t2a one vCPU per core
 - Ampere Altra Arm Q64-30 processor with all-core frequency of 3.0 GHz
 - t2d one vCPU per core
 - AMD EPYC 7B13 2.45 base 2.8 effective 3.5 max boost
 - c2d two vCPU per core (i.e. HT)
 - AMD EPYC 7B13 2.45 base 2.8 effective 3.5 max boost
 - c2 two vCPUs per core
 - Intel[®] Xeon[®] Gold 6253CL 3.1 base 3.8 all core turbo 3.9 single core

Same HW, different setup,

Google Cloud

different pricing

Benchmark results

Benchmark results

ARM CPUs faster than all tested x86 CPUs

(at least in early 2022)

CHEP 23

Let's consider cost in GKE

Machine Type	CPU	vCPUs	Physical cores	Cost (\$/h)
t2a-standard-4	ARM	4	4	0.154
t2d-standard-4	x86-64	4	4	0.169
c2d-standard-4	x86-64	4	2	0.1816
c2-standard-4	x86-64	4	2	0.2088

(Was accurate in early 2022)

Cost effectiveness

CHEP 23

Cost effectiveness

Porting experience (1/2)

- OS and the like came out of the box for both platforms
 - As standard docker images (we used k8s, remember?)
- x86 binaries already available, so a no brainer
 - Loaded straight from CVMFS
- We did not have ARM binaries, so we had to compile from source
 - Likely the first time it was done for most of the IceCube SW stack

Porting experience (2/2)

- We did not have ARM binaries
 - So, we had to compile from source
- CORSIKA is a FORTRAN application
 - Built without a hitch on ARM
 - But we also needed a bunch of helper tools for the jobs to run
- Many small helper tools involved
 - Still, the process was mostly painless
 - Found a few hardcoded x86-specific compiler parameters
 - Easy to replace with ARM-equivalents
 - But took a few passes to get them all

This is it for concrete data

• The previous slides contain pretty much all that we have done

- In the next few slides I will show a few reference data about power consumption I pulled from the Web
 - Take with a grain of salt!

CPU comparison

- Ampere Altra Q64-30
 - 64 cores at 3.0 GHz
 - 180W TDP
 - 8x 3200 DDR4 RAM

https://www.anandtech.com/show/16979/the-amperealtra-max-review-pushing-it-to-128-cores-per-socket

- AMD EPYC 7B13
 - CPU family 25, Stepping 1
 - 60 cores, base freq 2.45 Ghz
 - 8x 3200 DDR4 RAM
- Closest public TDP data is for EPYC 7713 at 225W TDP

https://www.amd.com/en/products/cpu/amd-epyc-7713

https://cloud.google.com/compute/docs/general-purposemachines#t2d_machines

Intel Xeon 6253CL supposedly has 18 cores at 200W TDP

CPU comparison

• Ampere Altra Q64-30

- 64 cores at 3.0 GHz CPU power CPU family 25, Stepping 1
- 180W TDP consumption is just a 60 cores, base freq 2.45 Ghz
- 8x 3200 DDR4 Rfraction of the total 8x 3200 DDR4 RAM

node power usage, ofsest public TDP data is for EPYC 7713 at 225W TDP

• AMD EPYC 7B13

https://www.anandtech.com/show/16979/the-amperealtra-max-review-pushing-it-to-128-cores-per-socket

https://www.amd.com/en/products/cpu/amd-epyc-7713

https://cloud.google.com/compute/docs/general-purposemachines#t2d_machines

Intel Xeon 6253CL supposedly has 18 cores at 200W TDP

CPU power effectiveness

CHEP 23

In summary

- ARM CPUs now easily available in the commercial Clouds
 - Porting code to ARM not hard if you have the source code
- In GKE, using IceCube CORSIKA simulation
 - ARM cores slightly faster than x86 cores
 - And priced significantly cheaper
- No hard data on power usage, but extrapolated data imply
 - ARM CPUs only modestly more power efficient that x86 competition

Other considerations

- Google Cloud keeps adding new CPUs as time goes by
 - E.g., c3 series, based on Intel Xeon Platinum 8481C (Saphire Rapids)
 - Did not repeat the tests on these to see how they compare
- ARM-based servers are available on-prem
 - In addition to x86-based ones
 - We did not systematically check those as a mean for comparison

Acknowledgement

- This work was partially funded by the U.S. National Science Foundation (NSF) under grants OAC-1826967, OAC-1541349, OPP- 2042807, CNS-1925001 and OAC- 2103963.
- All Google Kubernetes Engine costs have been covered by Google-issued credits.

