
XkitS：A computational storage framework

for high energy physics based on EOS
storage system

Yaosong Cheng, Minxing Zhang, Haibo Li, Yujiang Bi, Yaodong Cheng

Computing center, IHEP, CAS

2023-05-09

26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY & NUCLEAR PHYSICS

Outline

• Background and motivation

• Architecture design and implementation

• Deployment and usage

• Some use cases

• Conclusion

5/9/2023 2

Background - Data exploration
• The data generated worldwide will reach yottabyte (YB) every year by 2030

• Driven by large scientific experiments, IoT, smart vehicle, biomedical, new energy, AIGC, …

• It is difficult to move data due to too large volume

• If the data move is reduced, it will

• Save energy

• Save network bandwidth

• Reduce the load of host CPU

5/9/2023 3

Process data close/near/in storage

Computational Storage

• Move compute to the data instead of data to the compute

• Value

• Less data transferred on the network

• Faster response times (low latency)

• Improved security; Energy Efficiency

• Architecture Approaches

• CSD: Move compute into the drive

• CSA: Move compute into the storage array

• CSP: Compute platform on the PCI-E/NVMe/NVMeoF bus

• Implementation approaches

• FPGA, GPU, ASICs with embeded ARM, etc

• Standards

• SNIA TWG (Storage Networking Industry Association

Computational Technical Work Group)

• Computational Storage Architecture and Programming Model v1.0 published August 2022

5/9/2023 4

computation

Storage
Server

Compute Server

Storage
Server

Compute Server

computation
Less Traffic

https://www.snia.org/standards/technology-standards-software/standards-portfolio/computational-storage-architecture-and

Some cases of computational storage

• SmartSSD
• Put FPGA into SSD, supporting compression, AI inferencing, …

• Database acceleration
• Scans and aggregations close to data. POLARDB [FAST’20]

• File system offload
• Functions such as indexing and metadata operations in SmartSSD

• KevinFS [USENIX OSDI’21] (https://github.com/dgist-datalab/kevin)

• Computation offload from compute node
• push down structured queries from compute node to storage server

• SkyhookDM [FAST’20] (https://iris-hep.org/projects/skyhookdm.html)

• Neural network acceleration
• HolisticGNN [Fast’22], RecSSD [ASPLOS’21], RM-SSD [HPCA’22]

5/9/2023 5

https://www.usenix.org/system/files/fast20-cao_wei.pdf
https://www.usenix.org/system/files/osdi21_full_proceedings_interior.pdf#page=83
https://www.usenix.org/system/files/login/issues/login_summer20_issue.pdf#page=15
https://www.usenix.org/conference/fast22/presentation/kwon
https://asplos-conference.org/asplos2021/abstracts/asplos21-paper1455-extended_abstract.pdf
https://ieeexplore.ieee.org/abstract/document/9773272/

Why do we need Computational Storage

• Our current network-centric architecture and compute-storage separation

model have great challenges

5/9/2023 6

Login nodes

HTCondor

ToR Switches ToR Switches

Compute nodes

Core Switches

Disk
Array

ToR Switches

Storage nodes

Compute

Storage

ToR Switches

EOS
LustreDisk

Array

Problems

5/9/2023 7

Overloading of switch ports
leads to package loss

CPU efficiency is low on
compute nodes due to IO
bottleneckThe over-crowded network brings

instability and low performance of
distributed file systems

Solution considerations

• Different computational storage solutions

• CSD: many products available in the market, such as SmartSSD by Samsung, WD

NGD, etc. High performance, but with Small capacity, high price.

• CSA: Not yet find available products

• CSP: Use computing resources on storage node as a processor. Easy to expand

storage capacity but still exchange data between CSP and storage devices using PCIe.

• Computational storage solution based on EOS (developed by CERN)

• The CPU or other resources (GPU, FPGA, etc) in storage server work as CSP

• The name of task to be executed on storage server is appended into the file path

Open(“root://eos01/eos/data.txt”) → Open(“root://eos01/eos/data.txt?css=sort”)

• The task running on FST node r/w file locally

• Name the solution XkitS: an eXtendable kit for computational Storage

5/9/2023 8

https://eos-web.web.cern.ch/eos-web/

Architecture

5/9/2023 9

CSSFST

CSSFST

CSSFST

Unchanged
Unchanged

IO Server

Implementation
• Write a plugin EosFstCss for FST, which doesn’t modify any code of FST

• Based on the code of XrdThrottle in the Xrootd

5/9/2023 10

EosFstCss::Open ProcessOpaque
Key ‘CSS’

exists

XrdFstOssFile::Open

EosFstOss::Open

NO

ParseConf
YES

Path of executable

Generate output?

ReadLocalFile

CreateMGMFile

Run TaskSyncMGMAddReplica

Client

• If the task doesn’t generate output file, such as ‘sort’ function, SyncMGM and AddReplica are not

necessary, and stdout&stderr will be written into the local file, then READ operation will get them

• The naming of the local output file is based on EOS rule, ie. fid/10000

• The code is hosted on IHEP GitLab, and has been tested with EOS4.8 and EOS5.1

https://code.ihep.ac.cn/storage/eoscss/cssfst.git

Postfix of output

MGM

WriteLocalFile

Deployment in FST
• Install cssfst rpm package in FST server

• Modify xrd.cf.fst configuration file

xrootd.fslib -2 libXrdEosFst.so

xrootd.fslib -2 libEosFstCss.so -2 libXrdEosFst.so

• Edit /etc/eoscss.conf and customize computational storage functions

{ "sort" : {

"name" : "sort",

"path" : "/usr/local/libexec/cssfst/sort.sh",

"out" : false },

"km2a_decode" : {

"name" : "km2a-decode",

"path" : "/usr/local/libexec/cssfst/km2a-decode.sh",

"out" : true,

"postfix" : "root"},

"zstd": {

"name": "zstd",

"path" : "/usr/local/libexec/cssfst/zstd.sh",

"out" : true,

"postfix" : "zst“ } }

5/9/2023 11

• The executable shell is written and deployed by administrator,

which can use container (docker, singularity, …)

• All the executable shell should given one input file and one

output file, and return “EXEC_SUCCESS” or EXEC_FAILED

#cat sort.sh

/usr/bin/sort -n $1 > $2

if [$? -eq 0];then

echo "EXEC_SUCCESS"

exit 0

echo "EXEC_FAILED"

exit 1

#cat km2a-decode.sh

container=/usr/local/libexec/cssfst/km2adecode.sif

apptainer exec --bind $dirn $container

/root/km2a/km2a-decode/decode_sort $1 $2

if [$? -eq 0];then

echo "EXEC_SUCCESS"

exit 0

echo "EXEC_FAILED"

exit 1

How to add a new CSS function

• Don’t need to modify any code of the plugin or EOS

• Don’t need to restart any service of EOS

• 1st： Write your own program which runs on FST server using computing resources such

as GPU, CPU, FPGA, etc. Even the program could be a user-defined container

• Eg. partical_classify.exe

• 2nd: Wrap your program in a shell MUST with one input file and output file. If the program

doesn’t produce any output file, “stdout” or “stderr” can be redirected into the output file

• 3rd: Edit /etc/eoscss.conf and add a new JSON item, eg. ‘partical_classify’

“partical_classify" : {

"name" : "sort",

"path" : "/usr/local/libexec/cssfst/partical_classify.sh",

"out" : false },

DONE!!!

• 4th: use client tool to run the function adding it to file patheg. css=partical_classify

5/9/2023 12

wrapper of partical_classify.exe

How to use
• Two methods to use it, xrdcp or a dedicated client cssclient

• 1) use xrdcp, appending CSS function name into file path

xrdcp root://eosbak02.ihep.ac.cn//eos/user/chyd/data.txt?css=sort -

• 2) use cssclient tool, which is a wrapper of XrdPosixXrootd (Open, Read)

export EOS_MGM_URL=root://eosbak02.ihep.ac.cn/

cssclient -f /eos/user/chyd/data.txt -c sort

5/9/2023 13

Traditional mode, showing
the content of the file

Computational storage mode, showing
the processed content of the file

One example of LHAASO decode

• LHAASO is a large-scale cosmic ray detector array located in southwest China at an

altitude of 4410 meters, ~2000 KM away from Beijing

• It generates 12PB of data annually, which is transferred to Beijing

• Decode is process to convert raw detector binary data into ROOT file, which needs to read and

write much data but consumes very little CPU power

• Traditional computing mode: a compute node reads raw data (.dat) from one FST server

and then write output data (.root) into another EOS server

• Computational storage mode: any XRootd client can launch the decode function on FST

server through XRootd Client or cssclient, which read and write data locally

5/9/2023 14

The same program processes one same file, but the CSSFST only took one half the time of
traditional mode

Traditional mode running on
compute node

Computational storage mode
launched from a login node

More cases

• In addition to CPU power in EOS server, some heterogenous computing resources such as

GPU, CPU/SoC, FPGA can also be used as computational storage accelerator

• Case 1: We implemented Intelligent compression for synchrotron radiation source image

[chep’21] based on neural network algorithm, but it is very slow. So we use GPU and

FPGA to accelerate the process, more than 340X faster than original method

5/9/2023 15

Original GPU+FPGA JPEG2000 PNG ZSTD

Compression rate 2.08 1.78 1.26 1.43 1.13

Time(s) 1281.4 3.7 0.8 0.6 0.6
73.832

120.109

1.571
7.346

23.249

2.273

0

50

100

150

X86 ARM FPGA

Compression Time (second)

ZLIB ZSTD

• Case 2: We have designed a low-power server that

integrates an FPGA and an ARM chip on a single

motherboard. First, we ported EOS to the AARCH64

architecture [chep’21] and then developed a compression

algorithm based on FPGA, more than 100X faster than

ARM CPU, 50X faster than X86 CPU with ZLIB.

https://doi.org/10.1051/epjconf/202125103073
https://doi.org/10.1051/epjconf/202125102040

Conclusion

• Computational storage is an approach to exploit the computing resources in

EOS server

• The tool XkitS is scalability, configurability, ease of deployment and use

• The heterogenous computing power such as GPU, CPU/SoC, FPGA can be

added in storage server to accelerate the data processing

• There are some known issues, such as the difficulty to reduce data movement

in RAIN (erasure code) mode, task scheduling between storage servers, etc.

• Hopefully collaborate with the community to enhance computational storage

functionality, making it one of the optional features of EOS

5/9/2023 16

Thank you for your attention

chyd@ihep.ac.cn

