
XkitS：A computational storage framework 

for high energy physics based on EOS 
storage system

Yaosong Cheng, Minxing Zhang, Haibo Li, Yujiang Bi, Yaodong Cheng 

Computing center, IHEP, CAS

2023-05-09

26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY & NUCLEAR PHYSICS



Outline

• Background and motivation

• Architecture design and implementation

• Deployment and usage

• Some use cases

• Conclusion

5/9/2023 2



Background - Data exploration
• The data generated worldwide will reach yottabyte (YB) every year by 2030

• Driven by large scientific experiments, IoT, smart vehicle, biomedical, new energy, AIGC, …

• It is difficult to move data due to too large volume

• If the data move is reduced, it will

• Save energy

• Save network bandwidth

• Reduce the load of host CPU
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Process data close/near/in storage 



Computational Storage

• Move compute to the data instead of data to the compute

• Value

• Less data transferred on the network

• Faster response times (low latency)

• Improved security; Energy Efficiency 

• Architecture Approaches

• CSD: Move compute into the drive

• CSA: Move compute into the storage array

• CSP: Compute platform on the PCI-E/NVMe/NVMeoF bus

• Implementation approaches

• FPGA, GPU, ASICs with embeded ARM, etc

• Standards

• SNIA TWG (Storage Networking Industry Association

Computational Technical Work Group)

• Computational Storage Architecture and Programming Model v1.0 published August 2022
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https://www.snia.org/standards/technology-standards-software/standards-portfolio/computational-storage-architecture-and


Some cases of computational storage

• SmartSSD
• Put FPGA into SSD, supporting compression, AI inferencing, …

• Database acceleration
• Scans and aggregations close to data. POLARDB [FAST’20]

• File system offload
• Functions such as indexing and metadata operations in SmartSSD

• KevinFS [USENIX OSDI’21] (https://github.com/dgist-datalab/kevin)

• Computation offload from compute node 
• push down structured queries from compute node to storage server

• SkyhookDM [FAST’20] (https://iris-hep.org/projects/skyhookdm.html)

• Neural network acceleration
• HolisticGNN [Fast’22],  RecSSD [ASPLOS’21], RM-SSD [HPCA’22]
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https://www.usenix.org/system/files/fast20-cao_wei.pdf
https://www.usenix.org/system/files/osdi21_full_proceedings_interior.pdf#page=83
https://www.usenix.org/system/files/login/issues/login_summer20_issue.pdf#page=15
https://www.usenix.org/conference/fast22/presentation/kwon
https://asplos-conference.org/asplos2021/abstracts/asplos21-paper1455-extended_abstract.pdf
https://ieeexplore.ieee.org/abstract/document/9773272/


Why do we need Computational Storage

• Our current network-centric architecture and compute-storage separation 

model have great challenges
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Problems 
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Overloading of switch ports
leads to package loss 

CPU efficiency is low on 
compute nodes due to IO 
bottleneckThe over-crowded network brings 

instability and low performance of 
distributed file systems



Solution considerations

• Different computational storage solutions

• CSD: many products available in the market, such as SmartSSD by Samsung, WD 

NGD, etc. High performance, but with Small capacity, high price.

• CSA: Not yet find available products

• CSP: Use computing resources on storage node as a processor. Easy to expand 

storage capacity but still exchange data between CSP and storage devices using PCIe. 

• Computational storage solution based on EOS (developed by CERN)

• The CPU or other resources (GPU, FPGA, etc) in storage server work as CSP

• The name of task to be executed on storage server is appended into the file path

Open(“root://eos01/eos/data.txt”) → Open(“root://eos01/eos/data.txt?css=sort”)

• The task running on FST node r/w file locally

• Name the solution XkitS: an eXtendable kit for computational Storage
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https://eos-web.web.cern.ch/eos-web/


Architecture

5/9/2023 9

CSSFST

CSSFST

CSSFST

Unchanged
Unchanged

IO Server



Implementation
• Write a plugin EosFstCss for FST, which doesn’t modify any code of FST

• Based on the code of XrdThrottle in the Xrootd
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EosFstCss::Open ProcessOpaque
Key ‘CSS’ 

exists  

XrdFstOssFile::Open

EosFstOss::Open

NO

ParseConf
YES

Path of executable

Generate output?

ReadLocalFile

CreateMGMFile

Run TaskSyncMGMAddReplica

Client

• If the task doesn’t generate output file, such as ‘sort’ function, SyncMGM and AddReplica are not 

necessary, and stdout&stderr will be written into the local file, then READ operation will get them

• The naming of the local output file is based on EOS rule, ie. fid/10000

• The code is hosted on IHEP GitLab, and has been tested with EOS4.8 and EOS5.1

https://code.ihep.ac.cn/storage/eoscss/cssfst.git 

Postfix of output

MGM

WriteLocalFile



Deployment in FST
• Install cssfst rpm package in FST server

• Modify xrd.cf.fst configuration file

xrootd.fslib -2 libXrdEosFst.so

xrootd.fslib -2 libEosFstCss.so -2 libXrdEosFst.so

• Edit /etc/eoscss.conf and customize computational storage functions

{ "sort" :     {

"name" : "sort",

"path" : "/usr/local/libexec/cssfst/sort.sh",

"out"  : false },

"km2a_decode" : {

"name" : "km2a-decode",

"path" : "/usr/local/libexec/cssfst/km2a-decode.sh",

"out"  : true,

"postfix" : "root"},

"zstd": {

"name": "zstd",

"path" : "/usr/local/libexec/cssfst/zstd.sh",

"out"  : true,

"postfix" : "zst“  } }
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• The executable shell is written and deployed by administrator, 

which can use container (docker, singularity, …) 

• All the executable shell should given one input file and one 

output file, and return “EXEC_SUCCESS” or  EXEC_FAILED

#cat sort.sh 

/usr/bin/sort -n $1 > $2 

if [ $? -eq 0 ];then 

echo "EXEC_SUCCESS" 

exit 0 

echo "EXEC_FAILED" 

exit 1  

#cat km2a-decode.sh 

container=/usr/local/libexec/cssfst/km2adecode.sif 

apptainer exec --bind $dirn $container 

/root/km2a/km2a-decode/decode_sort $1 $2 

if [ $? -eq 0 ];then 

echo "EXEC_SUCCESS" 

exit 0 

echo "EXEC_FAILED" 

exit 1 



How to add a new CSS function

• Don’t need to modify any code of the plugin or EOS

• Don’t need to restart any service of EOS

• 1st： Write your own program which runs on FST server using computing resources such 

as GPU, CPU, FPGA, etc. Even the program could be a user-defined container

• Eg. partical_classify.exe 

• 2nd: Wrap your program in a shell MUST with one input file and output file. If the program 

doesn’t produce any output file, “stdout” or “stderr” can be redirected into the output file

• 3rd: Edit /etc/eoscss.conf and add a new JSON item, eg. ‘partical_classify’

“partical_classify" :     {

"name" : "sort",

"path" : "/usr/local/libexec/cssfst/partical_classify.sh",  

"out"  : false },

DONE!!! 

• 4th:  use client tool to run the function adding it to file patheg. css=partical_classify
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wrapper of partical_classify.exe



How to use
• Two methods to use it, xrdcp or a dedicated client cssclient

• 1) use xrdcp, appending CSS function name into file path

xrdcp root://eosbak02.ihep.ac.cn//eos/user/chyd/data.txt?css=sort -

• 2) use cssclient tool, which is a wrapper of XrdPosixXrootd (Open, Read)

export EOS_MGM_URL=root://eosbak02.ihep.ac.cn/

cssclient -f /eos/user/chyd/data.txt -c sort
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Traditional mode, showing 
the content of the file 

Computational storage  mode, showing 
the processed content of the file



One example of LHAASO decode

• LHAASO is a large-scale cosmic ray detector array located in southwest China at an 

altitude of 4410 meters, ~2000 KM away from Beijing

• It generates 12PB of data annually, which is transferred to Beijing

• Decode is process to convert raw detector binary data into ROOT file, which needs to read and 

write much data but consumes very little CPU power 

• Traditional computing mode: a compute node reads raw data (.dat) from one FST server 

and then write output data (.root) into another EOS server

• Computational storage mode: any XRootd client can launch the decode function on FST 

server through XRootd Client or cssclient, which read and write data locally
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The same program processes one same file, but the CSSFST only took one half the time of 
traditional mode   

Traditional mode running on 
compute node

Computational storage  mode 
launched from a login node



More cases

• In addition to CPU power in EOS server, some heterogenous computing resources such as 

GPU, CPU/SoC, FPGA can also be used as computational storage accelerator

• Case 1: We implemented Intelligent compression for synchrotron radiation source image 

[chep’21] based on neural network algorithm, but it is very slow. So we use GPU and 

FPGA to accelerate the process, more than 340X faster than original method
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• Case 2: We have designed a low-power server that 

integrates an FPGA and an ARM chip on a single 

motherboard. First, we ported EOS to the AARCH64 

architecture [chep’21] and then developed a compression 

algorithm based on FPGA, more than 100X faster than 

ARM CPU, 50X faster than X86 CPU with ZLIB.

https://doi.org/10.1051/epjconf/202125103073
https://doi.org/10.1051/epjconf/202125102040


Conclusion

• Computational storage is an approach to exploit the computing resources in 

EOS server

• The tool XkitS is scalability, configurability, ease of deployment and use

• The heterogenous computing power such as GPU, CPU/SoC, FPGA can be

added in storage server to accelerate the data processing

• There are some known issues, such as the difficulty to reduce data movement 

in RAIN (erasure code) mode, task scheduling between storage servers, etc. 

• Hopefully collaborate with the community to enhance computational storage 

functionality, making it one of the optional features of EOS
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Thank you for your attention

chyd@ihep.ac.cn


