26TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY & NUCLEAR PHYSICS

XkitS: A computational storage framework for high energy physics based on EOS storage system

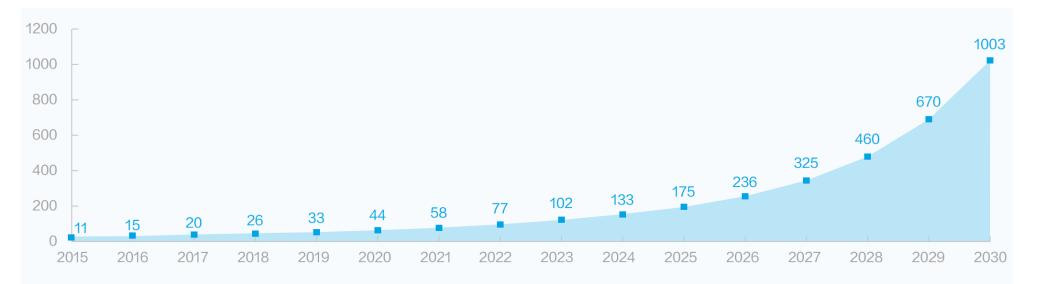
Yaosong Cheng, Minxing Zhang, Haibo Li, Yujiang Bi, Yaodong Cheng

Computing center, IHEP, CAS

2023-05-09

Outline

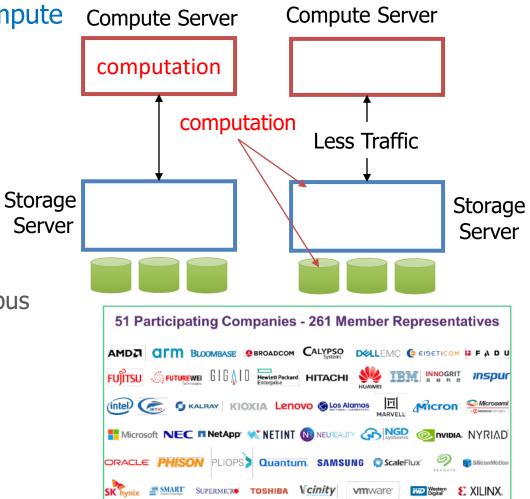
- Background and motivation
- Architecture design and implementation
- Deployment and usage
- Some use cases
- Conclusion



Background - Data exploration

- The data generated worldwide will reach yottabyte (YB) every year by 2030
 - Driven by large scientific experiments, IoT, smart vehicle, biomedical, new energy, AIGC, ...
 - It is difficult to move data due to too large volume
- If the data move is reduced, it will
 - Save energy
 - Save network bandwidth
 - Reduce the load of host CPU

Process data close/near/in storage



Computational Storage

- Move compute to the data instead of data to the compute Compute Server
- Value
 - Less data transferred on the network
 - Faster response times (low latency)
 - Improved security; Energy Efficiency
- Architecture Approaches
 - CSD: Move compute into the drive
 - CSA: Move compute into the storage array
 - CSP: Compute platform on the PCI-E/NVMe/NVMeoF bus
- Implementation approaches
 - FPGA, GPU, ASICs with embeded ARM, etc
- Standards

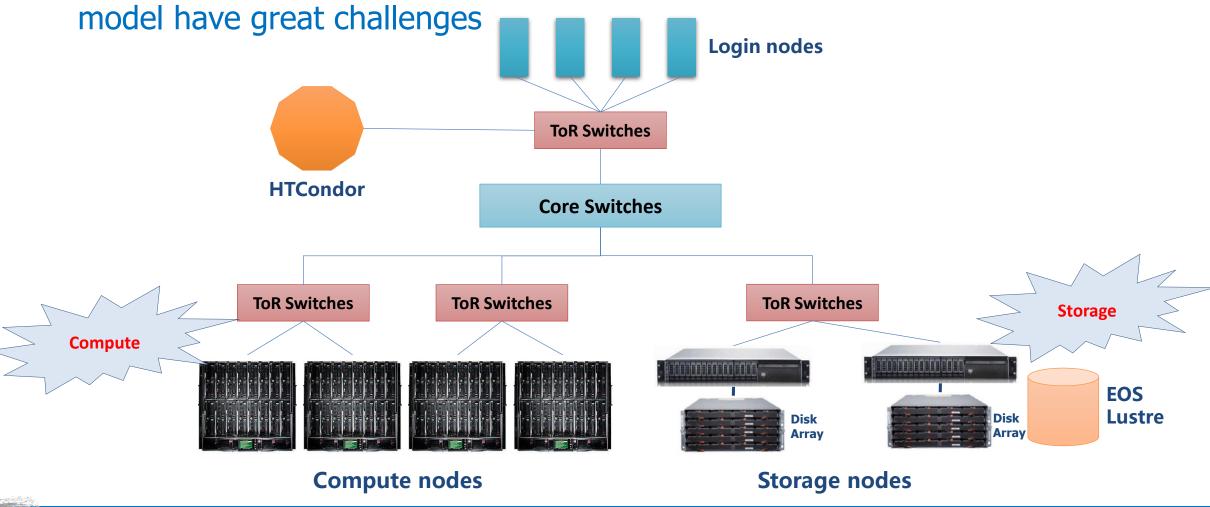
5/9/2023

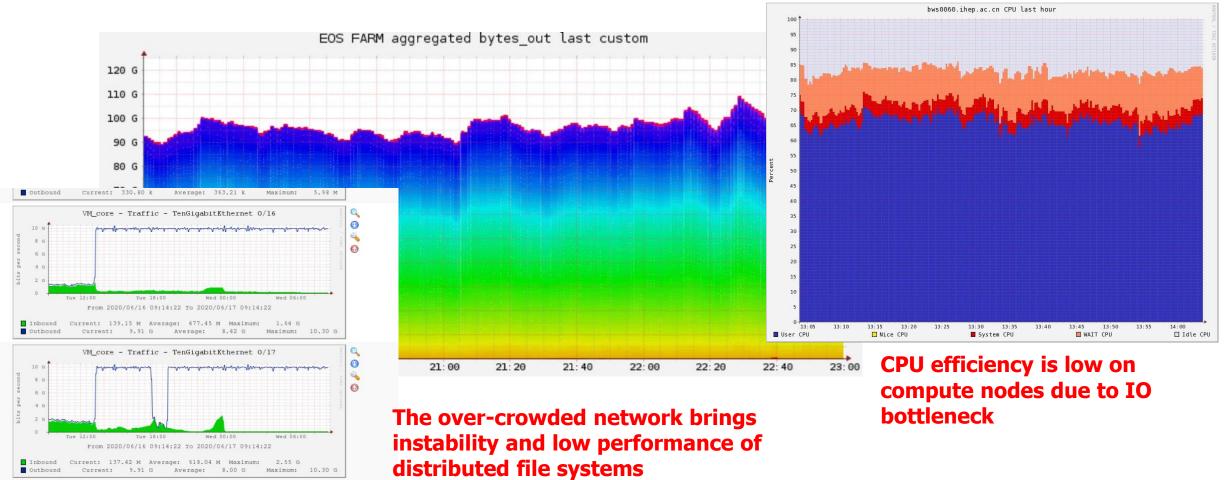
- SNIA TWG (Storage Networking Industry Association Computational Technical Work Group)
- Computational Storage Architecture and Programming Model v1.0 published August 2022

Some cases of computational storage

- SmartSSD
 - Put FPGA into SSD, supporting compression, AI inferencing, ...
- Database acceleration
 - Scans and aggregations close to data. POLARDB [FAST'20]
- File system offload

- Functions such as indexing and metadata operations in SmartSSD
- KevinFS [USENIX OSDI'21] (https://github.com/dgist-datalab/kevin)
- Computation offload from compute node
 - push down structured queries from compute node to storage server
 - SkyhookDM [FAST'20] (https://iris-hep.org/projects/skyhookdm.html)
- Neural network acceleration
 - HolisticGNN [Fast'22], RecSSD [ASPLOS'21], RM-SSD [HPCA'22]




Why do we need Computational Storage

• Our current network-centric architecture and compute-storage separation

Problems

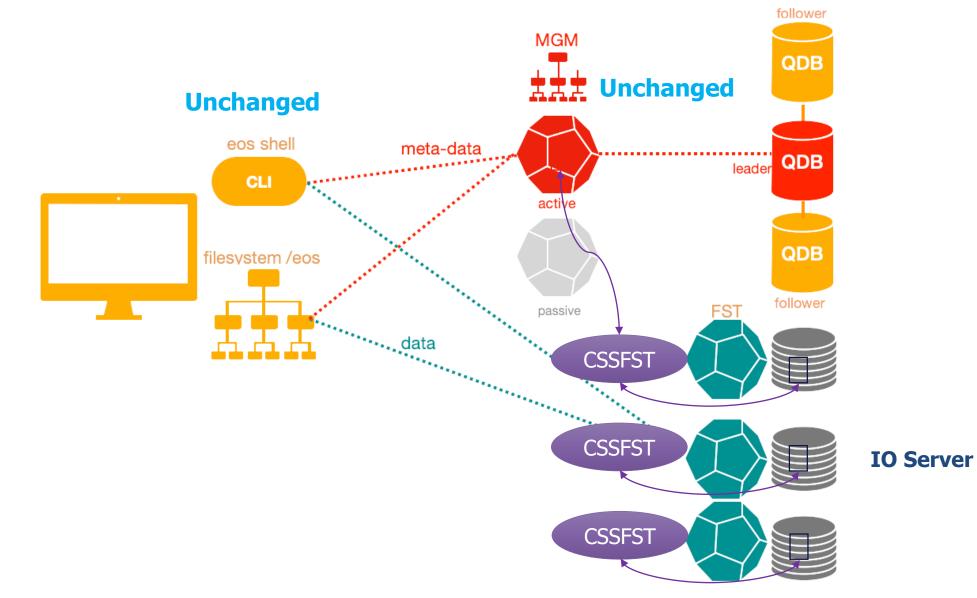
Overloading of switch ports leads to package loss

VM_core - Traffic - TenGigabitEthernet 0/18

Current: 9.91 G Average: 8.00 G Maximum: 10.30 G

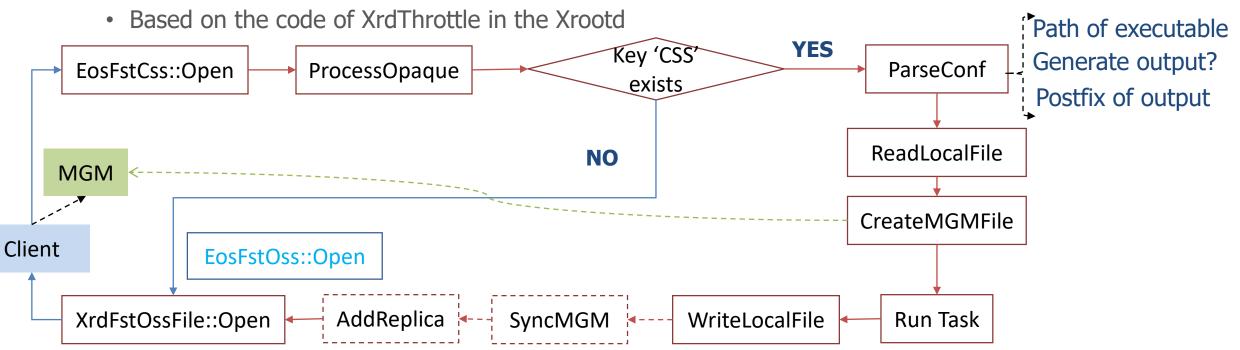
0

Outbound


5/9/2023

Solution considerations

- Different computational storage solutions
 - **CSD:** many products available in the market, such as SmartSSD by Samsung, WD NGD, etc. High performance, but with Small capacity, high price.
 - **CSA:** Not yet find available products
 - **CSP:** Use computing resources on storage node as a processor. Easy to expand storage capacity but still exchange data between CSP and storage devices using PCIe.
- Computational storage solution based on <u>EOS</u> (developed by CERN)
 - The CPU or other resources (GPU, FPGA, etc) in storage server work as CSP
 - The name of task to be executed on storage server is appended into the file path Open("root://eos01/eos/data.txt") → Open("root://eos01/eos/data.txt?css=sort")
 - The task running on FST node r/w file locally
 - Name the solution **XkitS**: an eXtendable kit for computational Storage


Architecture

Implementation

• Write a plugin EosFstCss for FST, which doesn't modify any code of FST

- If the task doesn't generate output file, such as 'sort' function, SyncMGM and AddReplica are not necessary, and stdout&stderr will be written into the local file, then READ operation will get them
- The naming of the local output file is based on EOS rule, ie. fid/10000
- The code is hosted on IHEP GitLab, and has been tested with EOS4.8 and EOS5.1 https://code.ihep.ac.cn/storage/eoscss/cssfst.git

Deployment in FST

- Install cssfst rpm package in FST server
- Modify xrd.cf.fst configuration file

xrootd.fslib -2 libXrdEosFst.so xrootd.fslib -2 libEosFstCss.so -2 libXrdEosFst.so

• Edit /etc/eoscss.conf and customize computational storage functions

```
{ "sort" : {
  "name" : "sort",
  "path" : "/usr/local/libexec/cssfst/sort.sh",
  "out" : false },
 "km2a decode" : {
  "name" : "km2a-decode",
                                                       #cat sort.sh
  "path" : "/usr/local/libexec/cssfst/km2a-decode.sh",
                                                       /usr/bin/sort -n $1 > $2
  "out" : true,
                                                       if [ $? -eq 0 ];then
  "postfix" : "root"},
                                                       echo "EXEC SUCCESS"
 "zstd": {
                                                       exit 0
 "name": "zstd",
                                                       echo "EXEC FAILED"
 "path" : "/usr/local/libexec/cssfst/zstd.sh",
                                                       exit 1
 "out" : true,
 "postfix" : "zst" } }
```

5/9/2023

- The executable shell is written and deployed by administrator, which can use container (docker, singularity, ...)
- All the executable shell should given one input file and one output file, and return "EXEC_SUCCESS" or EXEC_FAILED

#cat km2a-decode.sh

container=/usr/local/libexec/cssfst/km2adecode.sif apptainer exec --bind \$dirn \$container /root/km2a/km2a-decode/decode_sort \$1 \$2 if [\$? -eq 0];then echo "EXEC_SUCCESS" exit 0 echo "EXEC_FAILED" exit 1

11

How to add a new CSS function

- Don't need to modify any code of the plugin or EOS
- Don't need to restart any service of EOS
- 1st: Write your own program which runs on FST server using computing resources such as GPU, CPU, FPGA, etc. Even the program could be a user-defined container
 - Eg. partical_classify.exe
- 2nd: Wrap your program in a shell MUST with one input file and output file. If the program doesn't produce any output file, "stdout" or "stderr" can be redirected into the output file
- 3rd: Edit /etc/eoscss.conf and add a new JSON item, eg. `partical_classify'

"partical_classify" : {

"name" : "sort",

DONE!!!

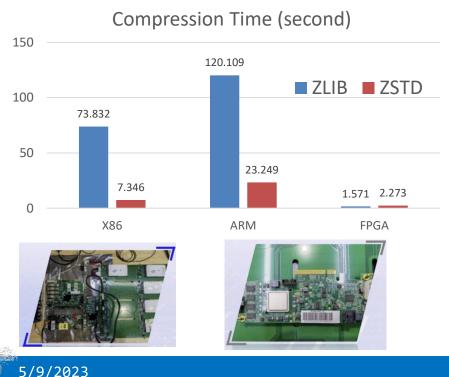
• 4th: use client tool to run the function adding it to file patheg. css=partical_classify

How to use

- Two methods to use it, xrdcp or a dedicated client cssclient
- 1) use xrdcp, appending CSS function name into file path xrdcp root://eosbak02.ihep.ac.cn//eos/user/chyd/data.txt?css=sort -
- 2) use cssclient tool, which is a wrapper of XrdPosixXrootd (Open, Read) export EOS_MGM_URL=root://eosbak02.ihep.ac.cn/ cssclient -f /eos/user/chyd/data.txt -c sort

1-01, 266.0 1-06, 145.9 2-04, 188.8 1-03, 183.1 2-01, 122.2 2-03, 199.1 1-04, 119.3 1-01, 222.3 2-05, 183.6 1-05, 180.3 1-04, 155.8 1-02, 190.5 1-20, 223.5	Traditional mode, showing the content of the file	1-01, 222.3 1-01, 266.0 1-02, 189.1 1-02, 190.5 1-03, 183.1 1-03, 185.1 1-04, 119.3 1-04, 155.8 1-05, 180.3 1-06, 145.9 1-20, 223.5 2-01, 122.2 2-02, 130.9	css]# xrdcp root://eosbak02.ihep.ac.cn//eos/user/chyd/data.txt?css=sort - Computational storage mode, showing the processed content of the file
1-02, 190.5		2-01, 122.2	Leone verdenne methodoge dan omenen som 150 fors för peggest framelogisk forment verden och påls framelogi resst fraggeber för
Conclusio	[[========][204B/s]		%][======][204B/s]

One example of LHAASO decode


- LHAASO is a large-scale cosmic ray detector array located in southwest China at an altitude of 4410 meters, ~2000 KM away from Beijing
 - It generates 12PB of data annually, which is transferred to Beijing
 - Decode is process to convert raw detector binary data into ROOT file, which needs to read and write much data but consumes very little CPU power
- Traditional computing mode: a compute node reads raw data (.dat) from one FST server and then write output data (.root) into another EOS server
- Computational storage mode: any XRootd client can launch the decode function on FST server through XRootd Client or cssclient, which read and write data locally

<pre>bash-4.2\$ time apptainer exec /home/chyd/km2adecode.sif /home/km2a/</pre>			<pre>bash-4.2\$ time cssclient -f /eos/user/chyd/km2a/20220701003242.670.dat -c km2a_decode file '/eos/user/chyd/km2a/20220701003242.670.dat.root' created</pre>				
<pre>decode_sort_xrootd.sh /eos/user/c/chyd/km2a/20220701003242.670.dat /eos/user/c/chyd/km2a/20220701003242.670.dat.root</pre>		real user	0m26.347s 0m0.015s		Computational storage mode launched from a login node		
real		Traditional mode running on	sys	0m0.015s 4.2\$ eos ls -l /e	eos/user/c	ROOF A CALL AND A	
user sys	0m31.467s 0m8.258s	compute node		r 1 chyd	u07 u07	1001554470 Nov 14 21:22 20220701003242.670.dat 446552932 Apr 20 05:26 20220701003242.670.dat.root	

The same program processes one same file, but the CSSFST only took one half the time of traditional mode

More cases

- In addition to CPU power in EOS server, some heterogenous computing resources such as GPU, CPU/SoC, FPGA can also be used as computational storage accelerator
- Case 1: We implemented Intelligent compression for synchrotron radiation source image [chep'21] based on neural network algorithm, but it is very slow. So we use GPU and FPGA to accelerate the process, more than 340X faster than original method

	Original	GPU+FPGA	JPEG2000	PNG	ZSTD
Compression rate	2.08	1.78	1.26	1.43	1.13
Time(s)	1281.4	3.7	0.8	0.6	0.6

 Case 2: We have designed a low-power server that integrates an FPGA and an ARM chip on a single motherboard. First, we ported EOS to the AARCH64 architecture [chep'21] and then developed a compression algorithm based on FPGA, more than 100X faster than ARM CPU, 50X faster than X86 CPU with ZLIB.

Conclusion

- Computational storage is an approach to exploit the computing resources in EOS server
- The tool XkitS is scalability, configurability, ease of deployment and use
- The heterogenous computing power such as GPU, CPU/SoC, FPGA can be added in storage server to accelerate the data processing
- There are some known issues, such as the difficulty to reduce data movement in RAIN (erasure code) mode, task scheduling between storage servers, etc.
- Hopefully collaborate with the community to enhance computational storage functionality, making it one of the optional features of EOS

Thank you for your attention chyd@ihep.ac.cn