High-Throughput Machine Learning
Inference with NVIDIA TensorRT
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High throughput demands of LHCbh Run 3

LHCDb studies mainly decays of beauty and charm hadrons with high signal rates
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e DAQ running at 40 MHz to cope with high signal rate
o  Reconstruction and selection with as many features as possible, as early as possible
o See also Flavio Pisani’s talk on LHCb’s triggerless DAQ
e Extract information from tracking sub-detectors and subsequently reconstruct and select
Make use of Machine Learning (inference) at earliest selection level as much as possible
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https://indico.jlab.org/event/459/contributions/11394/attachments/9352/13557/fpisani_CHEP_2023.pdf
https://cds.cern.ch/record/2823780/

Data flow of the current detector
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LHCB-FIGURE-2020-016

OFFLINE
PROCESSING

ANALYSIS
PRODUCTIONS &
USER ANALYSIS


https://cds.cern.ch/record/2730181?ln=en

First level trigger at LHCh HLT1

e 326 GPUs reduce the rate of incoming data
from 5 TB/s to approximately 100 GB/s
o Doubled the number of GPUs this year!
o About 70 kernels running, with the Allen software project
o See also Conor Fitzpatrick’s talk on HLT1 commissioning
e With 500 GPUs, minimum requirement is 60 kHz per GPU
for 30 MHz non-empty bunch crossings
o Target achieved!
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https://arxiv.org/abs/1912.09161
https://indico.jlab.org/event/459/contributions/11817/attachments/9504/13779/LHCb_GPU_CHEP.pdf
https://link.springer.com/article/10.1007/s41781-020-00039-7

HLT'1 reconstruction

VELO: clustering, tracking, vertexing
UT, SciFi: tracking
Track fit and secondary vertex reconstruction
Muon / Calorimeter reconstruction

o Muon and Electron PID

o Neutrals reconstruction

m See Ndria Valls Canudas’ talk
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https://indico.jlab.org/event/459/contributions/11405/attachments/9298/14040/Allen%20Calo%20Reco%20-%20CHEP23%20(3).pdf
https://cds.cern.ch/record/2717938/

HLT1 selection Typical rates

Trigger Rate [kHz]
e Selection focused on displaced charged track (combinations) |- Track 215+ 18
o  With additional dedicated (displaced) muon and electron lines 2Ttk 659 + 31
e Thresholds tuned to give a combined output of 1 MHz High- p; muon Sq- i

Displaced dimuon 74 + 10
High-mass dimuon 134 + 14
Total 999 + 38

Comput Softw Big Sci 4, 7 (2020)
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https://link.springer.com/article/10.1007/s41781-020-00039-7
https://cds.cern.ch/record/2717938/

Applications of ML in online environment of LHChH

e Classification of reconstructed objects (at all levels)
o Reconstruction
m Charged tracks

o Ghost rejection MLP from previous LHCb Run 2
e Real vs fake (ghost rejection)
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e Other tasks like pattern recognition and
anomaly detection are possible and studied


https://cds.cern.ch/record/2255039?ln=en

Providing a base for ML inference in HLT1 / Allen

e  Flexibility, maintainability
o Hard/hand-coded ML inference is not flexible / not great to maintain
o Platform to load standardized ML-model data format: ONNX
m  Supported by many (if not most) training software
= For LHCb, at CPU (HLT2) level being integrated with ONNXRuntime  (J N[N X

e Providing these features with inference on GPU
o LHCb uses NVIDIA RTX A5000
o TensorRT [link] from NVIDIA provides
m Fast-inference platform / SDK
m ONNXfilescanberead byit «
m  Optimization possible within
package, like quantization
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https://developer.nvidia.com/tensorrt

Testing throughput impact of TensorRT inference

Testing Machine Learning with TensorRT dummy ghost-rejection MLP
17 features (typical size) from tracks / tracking algorithms
2 hidden layers (dim: 25, 20), 1 dimensional classifier output
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Larger alternative with 6 hidden layers (up to 128 neurons) each tested as well

Testing possibility of quantization within TensorRT as well

Ghost rejection MLP from previous LHCb Run 2
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https://cds.cern.ch/record/2255039?ln=en

Throughput impact of TensorRT inference

e The baseline model tested
with respect to TensorRT batch size
o Kernel overhead is main bottleneck
m TThese MLPs are small
e At high batch size it seems feasible to run
multiple copies of such neural nets!
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Throughput impact of TensorRT inference

Other variations
e With larger MLPs, throughput
decrease is stronger, as expected
e Quantization differences are minimal
e Most effects seems to be batch size
e No show stoppers so far!
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CGonclusions and outlook

e LHCb has high demands of throughput of reconstruction
and selection on GPUs to cope with high signal rates

e Machine learning ideal to reduce rates
while keeping signal efficiencies high

e Introducing flexible loading of ML models at the
first trigger level (running on GPUs) with TensorRT

o Multiple copies of typical sized MLPs seems tO/_ﬁ

effect throughput in an acceptable way
e Promising avenue of having flexible ML reconstruction
and selection at the first trigger level!
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