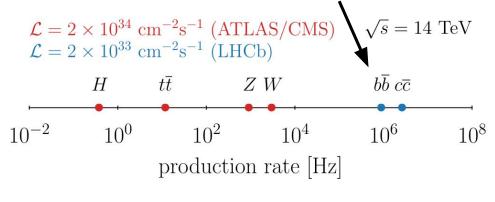
High-Throughput Machine Learning Inference with NVIDIA TensorRT

Maarten van Veghel on behalf of the LHCb RTA project

netherlands Science center

High throughput demands of LHCb Run 3

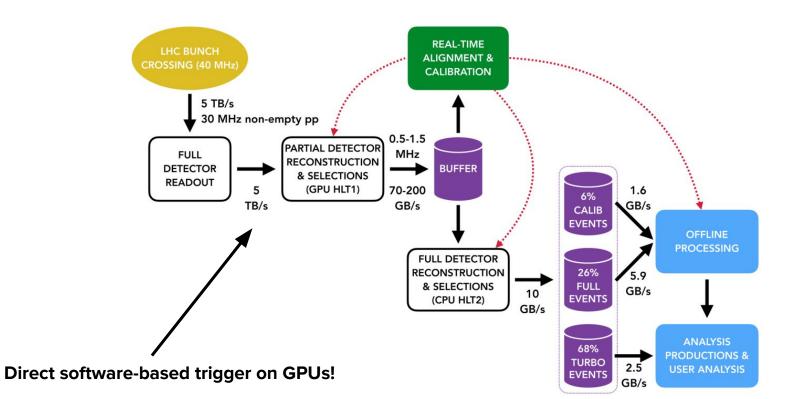
• LHCb studies mainly decays of *beauty* and *charm* hadrons with high signal rates



LHCb-PROC-2022-010

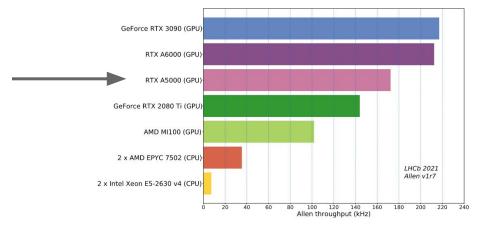
- DAQ running at 40 MHz to cope with high signal rate
 - *Reconstruction and selection* with as **many features** as possible, as **early** as possible
 - See also Flavio Pisani's talk on LHCb's triggerless DAQ
- Extract information from tracking sub-detectors and subsequently *reconstruct* and *select*
 - Make use of Machine Learning (inference) at earliest selection level as much as possible

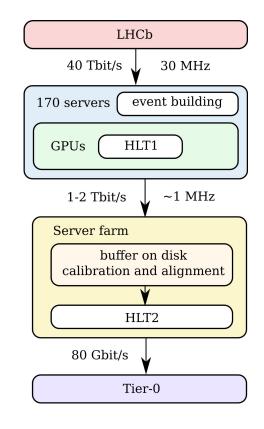
Data flow of the current detector



First level trigger at LHCb HLT1

- **326 GPUs** reduce the rate of incoming data from 5 TB/s to approximately 100 GB/s
 - Doubled the number of GPUs this year!
 - About **70 kernels** running, with the <u>Allen</u> software project
 - See also Conor Fitzpatrick's talk on HLT1 commissioning
- With 500 GPUs, **minimum** requirement is **60 kHz per GPU** for 30 MHz non-empty bunch crossings
 - Target achieved!

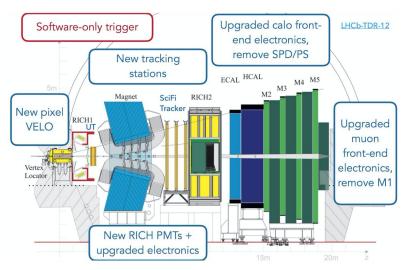


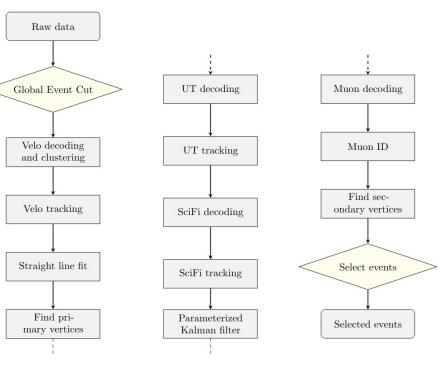


Comput Softw Big Sci 4, 7 (2020)

HLT1 reconstruction

- VELO: clustering, tracking, vertexing
- UT, SciFi: tracking
- Track fit and secondary vertex reconstruction
- Muon / Calorimeter reconstruction
 - Muon and Electron PID
 - Neutrals reconstruction
 - See Núria Valls Canudas' <u>talk</u>





LHCB-TDR-021

HLT1 selection

• Selection focused on *displaced charged track (combinations)*

- With additional dedicated (displaced) muon and electron lines
- Thresholds tuned to give a combined output of 1 MHz

Typical rates

Trigger	Rate [kHz]
1-Track	215 ± 18
2-Track	659 ± 31
High- p_T muon	5 ± 3
Displaced dimuon	74 ± 10
High-mass dimuon	134 ± 14
Total	999 ± 38

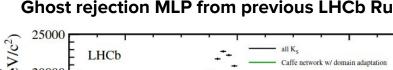
Comput Softw Big Sci 4, 7 (2020)

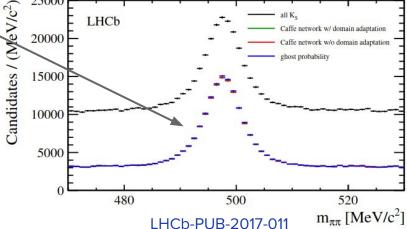


6

Applications of ML in online environment of LHCb

- Classification of reconstructed objects (at all levels)
 - Reconstruction 0
 - Charged tracks
 - Real vs fake (ghost rejection)
 - Type of charged tracks
 - pion / muon / electron / ...
 - Selection level \bigcirc
 - Higher level objects
 - combination of tracks coming from heavy flavour decays
 - Typically trained / used for selecting **specific signals** with trigger lines
 - Typical feature counts of 10-20 Ο
- Other tasks like *pattern recognition* and anomaly detection are possible and studied

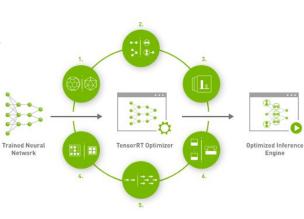




Ghost rejection MLP from previous LHCb Run 2

Providing a base for ML inference in HLT1 / Allen

- Flexibility, maintainability
 - Hard/hand-coded ML inference is not flexible / not great to maintain
 - Platform to load standardized ML-model data format: ONNX
 - Supported by many (if not most) training software
 - For LHCb, at CPU (HLT2) level being integrated with ONNXRuntime
- Providing these features with inference on GPU
 - LHCb uses NVIDIA RTX A5000
 - TensorRT [link] from NVIDIA provides
 - Fast-inference platform / SDK
 - ONNX files can be read by it
 - Optimization possible within package, like quantization



1. Weight & Activation Precision Calibration

Maximizes throughput by quantizing models to INT8 while preserving accuracy

2. Layer & Tensor Fusion

Optimizes use of GPU memory and bandwidth by fusing nodes in a kernel

3. Kernel Auto-Tuning

Selects best data layers and algorithms based on target GPU platform

4. Dynamic Tensor Memory

Minimizes memory footprint and re-uses memory for tensors efficiently

5. Multi-Stream Execution

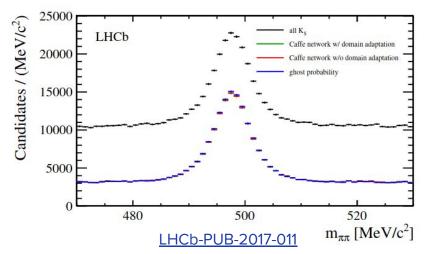
Scalable design to process multiple input streams in parallel

6. Time Fusion

Optimizes recurrent neural networks over time steps with dynamically generated kernels

Testing throughput impact of TensorRT inference

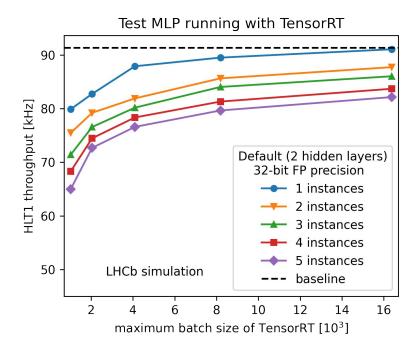
- Testing Machine Learning with TensorRT dummy ghost-rejection MLP
 - **17 features** (typical size) from tracks / tracking algorithms
 - 2 hidden layers (dim: 25, 20), 1 dimensional classifier output
 - Larger alternative with 6 hidden layers (up to 128 neurons) each tested as well
 - Testing possibility of quantization within TensorRT as well



Ghost rejection MLP from previous LHCb Run 2

Throughput impact of TensorRT inference

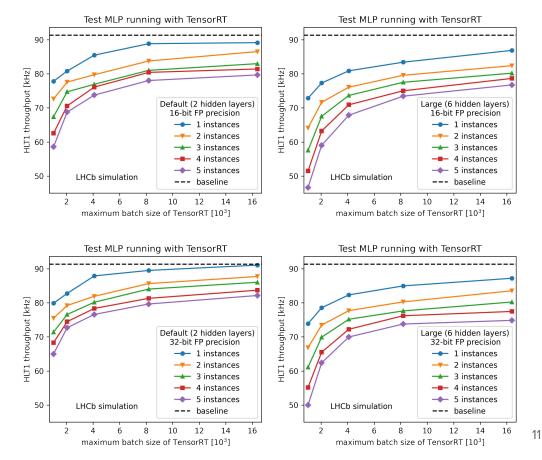
- The **baseline model** tested with respect to TensorRT **batch size**
 - Kernel overhead is main bottleneck
 - These MLPs are small
- At high batch size it seems **feasible to run multiple copies** of such neural nets!



Throughput impact of TensorRT inference

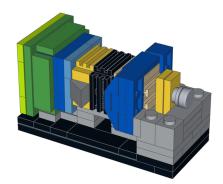
Other variations

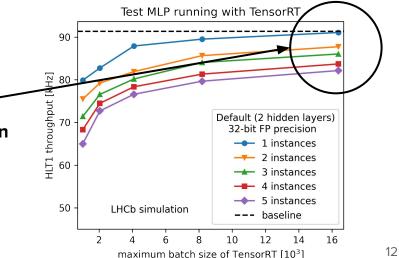
- With **larger MLPs**, throughput decrease is stronger, as expected
- **Quantization** differences are minimal
- Most effects seems to be **batch size**
- No show stoppers so far!



Conclusions and outlook

- LHCb has high demands of throughput of reconstruction and selection on GPUs to cope with high signal rates
- Machine learning ideal to reduce rates while keeping signal efficiencies high





- Introducing flexible loading of ML models at the first trigger level (running on GPUs) with TensorRT
 - Multiple copies of typical sized MLPs seems to effect throughput in an acceptable way
- Promising avenue of having flexible ML reconstruction and selection at the first trigger level!