

The University of Mancheste

LHCb GPU

The LHCb detector Upgrade 1 Why GPUs DAQ

GPU Performance

Upgrade 2 Conclusions

Introduction

LHCb GPU trigger commissioning with first data

Conor Fitzpatrick On Behalf of the LHCb RTA Project

CHEP 2023, Norfolk VA

UK Research and Innovation

C. Fitzpatrick

May 9, 2023

The LHCb detector in Run $1{+}2$

LHCb was built to exploit the high rates of beauty and charm at the LHC¹:

• Single arm spectrometer instrumented on $2 < \eta < 5$

- Precise particle identification (RICH + MUON)
- Excellent decay time resolution: \sim 45 fs (VELO)
- High purity + efficiency with flexible trigger and reconstruction down to low p_T

Upgrade 1 Why GPUs

MANCHESTER

LHCb GPU

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

¹[JINST 3 S08005 (2008)],[IJMPA 30, 1530022 (2015)]

The Run 2 LHCb Trigger

The LHCb Run 2 trigger (2015-2019)

- Three trigger levels, with a hardware L0 stage:
 - Level-0 trigger buys time to readout the detector with Calo, Muon $p_{\rm T}$ thresholds: $40 \rightarrow 1 MHz$
 - Events built at 1MHz, sent to HLT farm (~27000 physical cores)
 - \blacktriangleright HLT1 has 40 \times more time, fast tracking followed by inclusive selections 1MHz \rightarrow 100kHz
 - HLT2 has 400 × more time than L0: Full event reconstruction, inclusive + exclusive selections using whole detector
- Flexibility comes from software-centric HLT design²

LHCb GPU

Introduction

The LHCb detector

Upgrade 1

Why GPUs

DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

The MHz signal era

▶ For Run 3, LHCb is running at $\mathcal{L} = 2 \times 10^{33}$ cm⁻² s⁻¹: 5 × more collisions per second

 \blacktriangleright Readout becomes a bottleneck as signal rates \rightarrow MHz even after simple trigger criteria 3

MANCHESTER

LHCb GPU

Upgrade 2 Conclusions

C. Fitzpatrick

So what 'stuff' can we throw away?

- ▶ The problem is no longer one of rejecting (trivial) background
- Fundamentally changes what it means to trigger

Instead, we need to categorise different 'signals'

- Requires access to as much of the event as possible, as early as possible
- Solution: Drop the L0 trigger, reconstruct 30 MHz of events before making trigger decisions!

MANCHESTER 1824

LHCb GPU

Introduction

The LHCb detector

Upgrade 1

Why GPUs DAQ

GPU Performance

Upgrade 2

Conclusions

C. Fitzpatrick

May 9, 2023

Upgrade I

- RICH replaced photon detectors, SPD, PRS, M1 removed: LHCb-TDR-014
- Trackers replaced: scintillating fibers + silicon microstrips: LHCb-TDR-015
- ► The readout & trigger is upgraded: LHCb-TDR-016,

C. Fitzpatrick

Trigger & Reconstruction

▶ RTA: Real-Time Analysis (or Reconstruction, Trigger, Alignment)

The University of Manchest LHCb GPU Introduction The LHCb detector Upgrade 1 Why GPUs DAQ GPU Performance Upgrade 2 Conclusions

MANCHESTER

C. Fitzpatrick

- Builds on successful hybrid strategy for Run 2.
- In 2022 the GPU HLT1 (Allen⁴) was commissioned and took decisions for the first time

⁴[Comput Softw Big Sci 4, 7 (2020)] LHCb-TDR-021

Why GPUs?

The Allen team identified that GPUs are well suited to HEP reconstruction and trigger workloads:

Characteristics of LHCb HLT1	Characteristics of GPUs	Upgrade 1
		Why GPUs
Intrinsically parallel problem:	Good for	DAQ
- Run events in parallel	 Data-intensive parallelizable applications 	GPU Perfo
 Reconstruct tracks in parallel 	- High throughput applications	Upgrade 2
		Conclusions
Huge compute load	Many TFLOPS	
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs	
Small raw event data (~100 kB)	Connection via PCIe \rightarrow limited I/O bandwidth	
Small event raw data (~100 kB)	Thousands of events fit into O(10) GB of memory	

Key insight: Using GPUs as processors instead of coprocessors avoids overheads

But where to place them?

MANCHESTER

LHCb GPU

Introduction

The LHCb detector

mance

C. Fitzpatrick

LHCb Online architecture

100GbE

- The Online system has to build events for RTA at 30 MHz
- Commercial off-the-shelf DAQ network, event builder. buffer and event filter farm
- Event Builder nodes on a high-speed symmetric network
- In 2022: 40Tbits/s EB network throughput achieved, equivalent to 4% of the internet⁵
- 163 Event builders in total, with 3 spare PCIe slots each.
- Reducing rate here means downstream network requirements are much lower
- See Flavio's talk on Triggerless DAQ for more details

MANCHESTER

LHCh GPU Introduction

Conclusions

C. Fitzpatrick

May 9, 2023

⁵Computer weekly, 13/09/22

Allen Performance

- The entire software HLT1 sequence has been implemented in CUDA and benchmarked on several consumer and data center GPU devices
- Allen is able to run the entire HLT1 reconstruction + trigger sequence at the LHC bunch crossing rate on 163 RTX A5000s (one per EB node)⁶

- Cost of GPUs and savings to online network mean capacity has been expanded:
- Total GPU capacity now 326 (2 per node)
- Allows margin and to expand physics scope during Run 3+4.

Introduction The LHCb detector Upgrade 1 Why GPUs DAQ GPU Performance Upgrade 2 Conclusions

MANCHESTER

LHCh GPU

C. Fitzpatrick

Status of commissioning

- ▶ The GPU-based HLT1 is installed and has selected signals with the first Run 3 data!
- Dedicated Ks0 trigger lines are very pure directly from HLT1
- This is a first for LHCb, enabled by Allen
- Dedicated triggers for LLPs in Jiahui's talk
- Preliminary signals⁷ are very encouraging
- Expect further expansion of physics scope throughout Run 3

⁷[LHCb-FIGURE-2023-002], [LHCB-FIGURE-2023-005]

MANCHESTER

LHCh GPU

Conclusions

C. Fitzpatrick

Upgrade 2

- Upgrade 2 planning underway for LS4 (2033-2035)
 - Potential detector consolidation in LS3 (2026)
- ► FTDR approved in March 22 [LHCB-TDR-023]
- Exciting challenges in trigger and DAQ:

- 4D reconstruction: timing added to tracking to better isolate signals.
 Potential to add timing to hadron PID in LS3
- Potential for FPGA-based tracking: See Federico's talk

The University of Manche LHCb GPU Introduction The LHCb detector Upgrade 1 Why GPUs DAQ GPU Performance Upgrade 2

MANCHESTER

Conclusions

C. Fitzpatrick

Conclusions

MANCHESTER

- LHCb has commissioned a GPU based first-level trigger and reconstruction (Allen) operating at the LHC bunch crossing rate
 - The 2022 data taking period has shown that GPUs are a cost-effective method of triggering at a hadron collider
 - Using GPUs as a complete processing solution in the Event Builder makes for a more efficient DAQ network
 - ► The additional capacity from 326 GPUs gives room to expand LHCb's physics scope
- Allen has taken its first steps in Run 3
- ▶ LHCb is looking forward to getting the most from this new trigger paradigm...
- ...and its expansion towards the HL-LHC era

C. Fitzpatrick

Backups

MANCHESTER 1824 The University of Manchester

LHCb GPU

Backups Trigger Upgrade 2

C. Fitzpatrick

Why read out at 30MHz?

MANCHESTER LHCb GPU

Energy efficiency

MANCHESTER 1824
The University of Manchester

LHCb GPU

Backups

Trigger Upgrade 2

Architecture	Energy per trigger (mJ)	Gain	Total gain
E5-2630-v4 Xeon			
Before SW optimization	39.9	1.0x	
w/Physics optimizations	21.0	1.9x	1.9x
w/SIMD optimizations	8.4	2.5x	4.8x
7502 EPYC			
w/SIMD optimizations	3.2	2.6x	12.5x
Event Building Node, NR			
1 GPU	3.1	1.03x	12.9x
2 GPUs	2.4	1.29x	16.6x
3 GPUs	2.1	1.15x	19.0x
Dedicated GPU machine			
4 x 2080 Ti + 2 Network Cards	2.8	1.14x	14.3x
5 x 2080 Ti + 3 Network Cards	2.5	1.12x	16.0x
Pure GPU machine			
8 x 2080 Ti + Onboard Network	2.1	1.15x	19.0x

C. Fitzpatrick

May 9, 2023

EPJ Web Conf. 251 (2021) 04009

Timeline

• LHCb collected 9fb^{-1} during Run1 + Run 2

- ▶ Upgrade I now fully installed to collect 50fb⁻¹ during Run 3 + Run 4
- Upgrade II planning underway for 300fb⁻¹ Run 5 onwards

LHCb GPU

MANCHESTER

Backups

Trigger

Upgrade 2

C. Fitzpatrick

HLT1 algorithms in Allen

MANCHESTER 1824 The University of Manchester

LHCb GPU

Backups

Trigger

Upgrade 2

C. Fitzpatrick

LS3 consolidation

Modest consolidations with physics benefits already in Run 4 while preparing UII

driven by ageing driven by technology driven by physics

Detector	Proposal
SciFi consolidation	Replace inner modules $(12X + 12stereo)$
MAPS modules	2 layers, 1 m ² each
Magnet Stations	full installation
RICH	new FEE electronics
ECAL	32+144 inner modules
RTA	Downstream tracking with FPGA

RICH electronics with timing

Magnet Stations

ECAL inner modules

- Consolidation & Upgrade II
 preparatory work
- · Reused for Upgrade II
 - Costs accounted as part of Upgrade II for reused elements
- Proceed with LS3 TDRs before those for Upgrade II
 - Work already proceeding on some of these

MANCHESTER 1824 The University of Manchester

LHCb GPU

Backups

Trigger

Upgrade 2

C. Fitzpatrick

