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The future of CMS computing

• As the LHC transitions to the 
High Luminosity LHC, CMS 
workflow complexity will 
only increase
• Any complement to the 

performance increase which 
can be obtained using only 
CPUs will help



• Machine learning (ML) based 
algorithms are becoming 
increasingly common in CMS 
workflows
• Luckily, inference for ML algorithms

(and some domain algorithms) can 
be accelerated dramatically by 
running on coprocessors
• E.g. GPUs, FPGAs, and Intelligence

Processing Units (IPUs)
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Hardware-based acceleration



• The most straightforward way to deploy 
algorithms on coprocessors is to run 
workflows on machines with coprocessors
• This “Direct connection” can be inefficient:
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Heterogeneous computing

Traditional direct CPU->GPU connection:

Too few models or cores 
= underutilized GPU

Narrow “sweet spot” in 
terms of models or cores

Too many models or cores = 
oversaturated GPU

Also: workflows can only take advantage of 
acceleration if they run on a machine with a 
coprocessor – expensive at large scales!



• “Inference as a Service” (IaaS): 
alternate coprocessor deployment 
scheme where coprocessor-enabled 
machines host an inference server 
and remote jobs send inference 
requests via network connection
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Inference as a Service

Adjust the number of GPUs per 
client-CPU core to get as close to the 

“sweet spot” as possible

Inference as a Service:



• Within CMS software (CMSSW), the IaaS deployment scheme is called 
“Services for Optimized Network Inference on Coprocessors” (SONIC)
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SONIC



• SONIC uses NVIDIA Triton inference servers
• CMSSW only handles preprocessing and 

I/O, not inference framework
• Triton supports many ML backends: ONNX, 

TensorFlow, PyTorch, Scikit-Learn, etc.
• Improves model-building flexibility

• Makes asynchronous inference requests
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SONIC

https://developer.nvidia.com/nvidia-triton-inference-server


• As a testbed for SONIC-enabled 
deployment, we created a MiniAOD
demonstrator workflow
• Runs a refinement and slimming step 

of CMS data processing
• Full MiniAOD processing workflow

typically run ~monthly
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Studying SONIC at scale

Mini-AOD production typically takes about 0.5 seconds 
per event on production grid nodes

[1702.04685]

https://arxiv.org/abs/1702.04685


• Inferences for three classes of algorithms 
were run through SONIC:
• ONNX-based jet tagger
• TensorFlow based missing energy calculation
• TensorFlow based CNN for tau lepton ID

• These algorithms consume about 10% of 
total workflow latency
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Studying SONIC at scale



• MiniAOD demonstrator was deployed in 
multiple computing contexts
• Google Cloud (GCP): Triton server on cloud 

VM, with client-side CPUs also in cloud
• Purdue computing cluster: 2 T4s available –

client CPUs at Purdue (can also use cloud 
GPUs)
• Fermilab computing: We had (non-exclusive) 

access to 2 T4s at Fermilab

• NOTE: Can use CPUs at one site to 
communicate with GPUs at another site
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Computing resources



• Triton provides a model analyzer tool to optimize server settings
• For example, we can adjust parameters like preferred batch size
• We can also compare different backends if there are multiple versions and try 

optimization schemes such as TensorRT (TRT)
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Optimizing performance: server parameters
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• Having explored server parameters, we can test the number of client 
jobs that a single GPU can handle
• We perform these tests in the cloud, as we need to synchronize jobs 

running on O(1000) CPU cores
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Optimizing performance: CPU-to-GPU ratio



• Because we run algorithms asynchronously, per-event latency should not be 
negatively affected by client-to-server distance
• This was verified by running client jobs at Purdue that talked with servers either 

locally at Purdue or in the cloud (physically over 100 miles from the client)
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Testing performance: distance-induced latency?
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• SONIC deployment accounts for potential server failures by reserving the 
ability to deploy a “fallback” server based on client-side CPU resources
• Ideally, this would not result in higher latencies relative to running entirely 

on CPU without SONIC - we do not observe any such slowdowns
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Testing performance: server overhead?
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• Lastly, we performed a scale-out test at GCP, using 10,000 CPU cores split into 
2,500 4-threaded client jobs
• 100 Tesla T4 GPUs were used to host the MiniAOD models with a Kubernetes load 

balancer to ensure even GPU usage
• Peak network usage was ~15 GB/s (total bandwidth coming into GPU cluster)
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Testing performance: running at large scale



• Inference as a Service, implemented as SONIC in CMSSW, can help alleviate 
CMS computing pressures by accelerating algorithm execution
• With SONIC, we achieve

• Increased throughput: GPUs enable acceleration of ML algorithms
• Optimizable GPU-to-CPU ratios: we can save money if looking to buy GPUs or 

increase utilization of current resources
• Flexible algorithm design: Not restricted to only supported frameworks in CMSSW
• Use of remote GPUs

• Demonstrated robustness and minimal impact of potential risks
• Use of fallback servers shown to not impact workflow throughput
• Network bandwidth requirements not problematic at scales similar to true

MiniAOD workflow deployment
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Conclusions



• To run SONIC in full production, we need a GPU resources scouting 
and server deployment scheme
• Currently developing a Kubernetes-based framework for dynamic server 

creation and deletion

• Convert more reconstruction algorithms to ML to take advantage of 
hardware-based acceleration*
• Can expand to other GPU vendors and coprocessor types with custom 

backends or interoperable servers
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Future and challenges

*And potentially improve performance


