
Patrick McCormack (MIT)
For the CMS Collaboration

May 11, 2023
CHEP 2023

Portable Acceleration of CMS Mini-AOD 
Production with Coprocessors as a Service

1P. McCormack (MIT) - CHEP 2023



P. McCormack (MIT) - CHEP 2023 2

The future of CMS computing

• As the LHC transitions to the 
High Luminosity LHC, CMS 
workflow complexity will 
only increase
• Any complement to the 

performance increase which 
can be obtained using only 
CPUs will help



• Machine learning (ML) based 
algorithms are becoming 
increasingly common in CMS 
workflows
• Luckily, inference for ML algorithms

(and some domain algorithms) can 
be accelerated dramatically by 
running on coprocessors
• E.g. GPUs, FPGAs, and Intelligence

Processing Units (IPUs)

P. McCormack (MIT) - CHEP 2023 3

Hardware-based acceleration



• The most straightforward way to deploy 
algorithms on coprocessors is to run 
workflows on machines with coprocessors
• This “Direct connection” can be inefficient:

P. McCormack (MIT) - CHEP 2023 4

Heterogeneous computing

Traditional direct CPU->GPU connection:

Too few models or cores 
= underutilized GPU

Narrow “sweet spot” in 
terms of models or cores

Too many models or cores = 
oversaturated GPU

Also: workflows can only take advantage of 
acceleration if they run on a machine with a 
coprocessor – expensive at large scales!



• “Inference as a Service” (IaaS): 
alternate coprocessor deployment 
scheme where coprocessor-enabled 
machines host an inference server 
and remote jobs send inference 
requests via network connection

P. McCormack (MIT) - CHEP 2023 5

Inference as a Service

Adjust the number of GPUs per 
client-CPU core to get as close to the 

“sweet spot” as possible

Inference as a Service:



• Within CMS software (CMSSW), the IaaS deployment scheme is called 
“Services for Optimized Network Inference on Coprocessors” (SONIC)

P. McCormack (MIT) - CHEP 2023 6

SONIC



• SONIC uses NVIDIA Triton inference servers
• CMSSW only handles preprocessing and 

I/O, not inference framework
• Triton supports many ML backends: ONNX, 

TensorFlow, PyTorch, Scikit-Learn, etc.
• Improves model-building flexibility

• Makes asynchronous inference requests

P. McCormack (MIT) - CHEP 2023 7

SONIC

https://developer.nvidia.com/nvidia-triton-inference-server


• As a testbed for SONIC-enabled 
deployment, we created a MiniAOD
demonstrator workflow
• Runs a refinement and slimming step 

of CMS data processing
• Full MiniAOD processing workflow

typically run ~monthly

P. McCormack (MIT) - CHEP 2023 8

Studying SONIC at scale

Mini-AOD production typically takes about 0.5 seconds 
per event on production grid nodes

[1702.04685]

https://arxiv.org/abs/1702.04685


• Inferences for three classes of algorithms 
were run through SONIC:
• ONNX-based jet tagger
• TensorFlow based missing energy calculation
• TensorFlow based CNN for tau lepton ID

• These algorithms consume about 10% of 
total workflow latency

P. McCormack (MIT) - CHEP 2023 9

Studying SONIC at scale



• MiniAOD demonstrator was deployed in 
multiple computing contexts
• Google Cloud (GCP): Triton server on cloud 

VM, with client-side CPUs also in cloud
• Purdue computing cluster: 2 T4s available –

client CPUs at Purdue (can also use cloud 
GPUs)
• Fermilab computing: We had (non-exclusive) 

access to 2 T4s at Fermilab

• NOTE: Can use CPUs at one site to 
communicate with GPUs at another site

P. McCormack (MIT) - CHEP 2023 10

Computing resources



• Triton provides a model analyzer tool to optimize server settings
• For example, we can adjust parameters like preferred batch size
• We can also compare different backends if there are multiple versions and try 

optimization schemes such as TensorRT (TRT)

P. McCormack (MIT) - CHEP 2023 11

Optimizing performance: server parameters



100 200 300 400 500 600
Number of synchronized 4-threaded jobs

3.4
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4

Th
ro

ug
hp

ut
 [e

vt
/s

]

PyTorch ParticleNet for AK4 jets
DeepMET
DeepTau with TRT
PyTorch ParticleNet for AK8 jets (3 models on 1 GPU)
Average of "Direct-inference" Jobs

13 TeVCMSSimulation Preliminary

• Having explored server parameters, we can test the number of client 
jobs that a single GPU can handle
• We perform these tests in the cloud, as we need to synchronize jobs 

running on O(1000) CPU cores
P. McCormack (MIT) - CHEP 2023 12

Optimizing performance: CPU-to-GPU ratio



• Because we run algorithms asynchronously, per-event latency should not be 
negatively affected by client-to-server distance
• This was verified by running client jobs at Purdue that talked with servers either 

locally at Purdue or in the cloud (physically over 100 miles from the client)
P. McCormack (MIT) - CHEP 2023 13

Testing performance: distance-induced latency?

0 5 10 15 20 25
Number of synchronized 4-threaded jobs

3.5

4

4.5

5

Th
ro

ug
hp

ut
 [e

vt
/s

] 13 TeVCMS Simulation Preliminary

SONIC with HEPCloud Server

SONIC with Purdue Server

Average of "Direct-inference" Jobs



• SONIC deployment accounts for potential server failures by reserving the 
ability to deploy a “fallback” server based on client-side CPU resources
• Ideally, this would not result in higher latencies relative to running entirely 

on CPU without SONIC - we do not observe any such slowdowns
P. McCormack (MIT) - CHEP 2023 14

Testing performance: server overhead?

5 10 15 20

5

10

15

20

25

Th
ro

ug
hp

ut
 [e

vt
/s

] 13 TeVCMS Simulation Preliminary

"Direct-inference" Jobs

SONIC Jobs on Local CPUs

2 4 6 8 10 12 14 16 18 20 22
nThreads per job

0.9
0.95

1
1.05

1.1

R
at

io



3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
Throughput [evt/s]

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18
0.2

0.22
0.24

N
or

m
al

iz
ed

 N
um

. o
f E

ve
nt

s

SONIC Jobs

CPU "Direct-inference" Jobs

13 TeVCMSSimulation Preliminary

• Lastly, we performed a scale-out test at GCP, using 10,000 CPU cores split into 
2,500 4-threaded client jobs
• 100 Tesla T4 GPUs were used to host the MiniAOD models with a Kubernetes load 

balancer to ensure even GPU usage
• Peak network usage was ~15 GB/s (total bandwidth coming into GPU cluster)

P. McCormack (MIT) - CHEP 2023 15

Testing performance: running at large scale



• Inference as a Service, implemented as SONIC in CMSSW, can help alleviate 
CMS computing pressures by accelerating algorithm execution
• With SONIC, we achieve

• Increased throughput: GPUs enable acceleration of ML algorithms
• Optimizable GPU-to-CPU ratios: we can save money if looking to buy GPUs or 

increase utilization of current resources
• Flexible algorithm design: Not restricted to only supported frameworks in CMSSW
• Use of remote GPUs

• Demonstrated robustness and minimal impact of potential risks
• Use of fallback servers shown to not impact workflow throughput
• Network bandwidth requirements not problematic at scales similar to true

MiniAOD workflow deployment

P. McCormack (MIT) - CHEP 2023 16

Conclusions



• To run SONIC in full production, we need a GPU resources scouting 
and server deployment scheme
• Currently developing a Kubernetes-based framework for dynamic server 

creation and deletion

• Convert more reconstruction algorithms to ML to take advantage of 
hardware-based acceleration*
• Can expand to other GPU vendors and coprocessor types with custom 

backends or interoperable servers

P. McCormack (MIT) - CHEP 2023 17

Future and challenges

*And potentially improve performance


