Portable Acceleration of CMS Mini-AOD

Patrick McCormack (MIT)

Production with Coprocessors as a Service
For the CMS Collaboration

'@%
%e May 11, 2023
I I I H N CHEP 2023

The future of CMS computing

 As the LHC transitions to the ———————— 11—

High Luminosity LHC, CMS gsoooo T yd
workflow complexity will %40000‘ - Moo /,/ I
only increase 20000}
V4
* Any complement to the 2 20000-
performance increase which S 10000
can be obtained using only = —
0 I 2053 I 2055 I 2627 I I I I I I

]]]]]]
. 2021 2029 2031 2033 2035 2037
CPUs will help Year

ardware-based acceleration

* Machine learning (ML) based
algorithms are becoming
increasingly common in CMS
workflows

* Luckily, inference for ML algorithms
(and some domain algorithms) can
be accelerated dramatically by
running on cCoOprocessors

* E.g. GPUs, FPGAs, and Intelligence
Processing Units (IPUs)

P. McCormack (MIT) - CHEP 2023 3

eterogeneous computing

. COPROCESSOR

* The most straightforward way to deploy (GPUFPGAASIC)
algorithms on coprocessors is to run

workflows on machines with coprocessors —

(GPU,FPGA ASIC)

* This “Direct connection” can be inefficient:

Traditional direct CPU->GPU connection:

\ S

1
' Too few models or cores Narrow “sweet spot” in
= underutilized GPU terms of models or cores

COPROCESSOR
(GPU,FPGA ASIC)

)

— | Also: workflows can only take advantage of
Too many models or cores = ! acceleration if they run on a machine with a
oversaturated GPU | coprocessor — expensive at large scales!

P. McCormack (MIT) - CHEP 2023 4

Inference as a Service

* “Inference as a Service” (laaS):
alternate coprocessor deployment
scheme where coprocessor-enabled
machines host an inference server
and remote jobs send inference
requests via network connection

Inference as a Service:

e

Adjust the number of GPUs per
client-CPU core to get as close to the
“sweet spot” as possible

Coprocessor
(GPU/FPGA/IPU/
etc)

Coprocessor

(GPU/FPGA/IPU/
etc)

ModelD

P. McCormack (MIT) - CHEP 2023 5

e Within CMS software (CMSSW), the laaS deployment scheme is called
“Services for Optimized Network Inference on Coprocessors” (SONIC)

___ gRPC connection e e e e e e e e e C T T e e C PR ETETTEPETEEPEPETLER
; ; : Al Inference Cluster Triton
: 4 . .
oMssw (T) crey O (CPUIGPU/IPUIFPGA/etc) Server i
: Client JE >: (Local/Remote) :
> \ Send inputs :] :
ien .
N oroduce() l Balancer
° : Receive outputs : H

[Client CPU .
Repository

P. McCormack (MIT) - CHEP 2023 6

SONIC

* SONIC uses NVIDIA Triton inference servers

* CMSSW only handles preprocessing and
1/0, not inference framework

e Triton supports many ML backends: ONNX,
TensorFlow, PyTorch, Scikit-Learn, etc.

* Improves model-building flexibility

* Makes asynchronous inference requests

P. McCormack (MIT) - CHEP 2023

https://developer.nvidia.com/nvidia-triton-inference-server

[1702.04685]
CMS Run 2 Data Flow

One common
implementation:
Mini-AOD

e As a testbed for SONIC-enabled
deployment, we created a MiniAOD
demonstrator workflow

* Runs a refinement and slimming step
of CMS data processing

* Full MiniAOD processing workflow
typically run Ymonthly

Takes 24h to run

Typically serving ~5 different analyses

Mini-AOD production typically takes about 0.5 seconds
per event on production grid nodes

P. McCormack (MIT) - CHEP 2023

https://arxiv.org/abs/1702.04685

* Inferences for three classes of algorithms
were run through SONIC:
* ONNX-based jet tagger
* TensorFlow based missing energy calculation
* TensorFlow based CNN for tau lepton ID

* These algorithms consume about 10% of
total workflow latency

P. McCormack (MIT) - CHEP 2023 9

Computing resources

* MiniAOD demonstrator was deployed in
multiple computing contexts

* Google Cloud (GCP): Triton server on cloud
VM, with client-side CPUs also in cloud

* Purdue computing cluster: 2 T4s available —
client CPUs at Purdue (can also use cloud
GPUs)

* Fermilab computing: We had (non-exclusive)
access to 2 T4s at Fermilab

* NOTE: Can use CPUs at one site to
communicate with GPUs at another site

P. McCormack (MIT) - CHEP 2023

L
L. 2

Ferm

lab

. CMS Simulation Preliminary (13 TeV) CMS Simulation Preliminary (13 TeV)
Ia' % T I T T T T T I T T T T T I T \E Ia' [T T I T T T T L I T T T T L I T]
E [— OnTeslaT4] @ . 1
g 104L On Tesla CPU = 2
= F —+— PN-AK4 ONNX T & 3 "g_
i m kT
G 100) + PN-AKATRT s 1 26l |
a | 3
: I <
2102} 4 F
z | T
1l 1 | B - M- L
"l 102 5 - B
ex ox ;:’
oZ 1 1 o222
I *a’ !
o © o O I
0- [1 L1
102

e I [! R R
102 10° 10!

Batch Size

4\' \\\\\I
100 10

* Triton provides a model analyzer tool to optimize server settings

Batch Size

* For example, we can adjust parameters like preferred batch size
* We can also compare different backends if there are multiple versions and try

optimization schemes such as TensorRT (TRT)

P. McCormack (MIT) - CHEP 2023

11

Optimizing performance: CPU-to-GPU ratio

44 CMS S/mulat/on Prel/mlnary 13 TeV
. 1 1 1 | 1 1 1 1
C PyTorch PartcheNet for AK4 jets I-
43 F DeepMET —I
- ——— DeepTau with TRT]
4.2 F PyTorch ParticleNet for AK8 jets (3 models on 1 GPU)

----------- Average of "Direct-inference" Jobs

Throughput [evt/s]
N
|
|

Y7 S P N N B :

100 200 300 400 500 600
Number of synchronized 4-threaded jobs

* Having explored server parameters, we can test the number of client
jobs that a single GPU can handle

* We perform these tests in the cloud, as we need to synchronize jobs
running on O(1000) CPU cores

Testing performance: distance-induced latency?

CMS Simulation Preliminary 13 TeV
'a' = 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 -1
< i —4— SONIC with HEPCloud Server
3 i
= g [—4— SONIC with Purdue Server
= u _
_8. - e Average of "Direct-inference" Jobs
= i
3 -
o i
T — _
= 4.5 I
4 |]
35 _
B 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1]
0 5 10 15 20 25

Number of synchronized 4-threaded jobs

* Because we run algorithms asynchronously, per-event latency should not be
negatively affected by client-to-server distance

* This was verified by running client jobs at Purdue that talked with servers either
locally at Purdue or in the cloud (physically over 100 miles from the client)

Testing performance: server overhead?

CMS simulation Preliminary 13 TeV
& BT
S~
+ I "Direct-inference" Jobs
3 0k T i
a —+— SONIC Jobs on Local CPUs
S
D 15[.
e L
< I
= 10 -
5F]
1.1
©1.05
| Y —
@0.95
0.9

2 4 6 8 10 12 14 16 18 20 22
nThreads per job

* SONIC deployment accounts for potential server failures by reserving the
ability to deploy a “fallback” server based on client-side CPU resources

* |deally, this would not result in higher latencies relative to running entirely
on CPU without SONIC - we do not observe any such slowdowns

Testing performance: running at large scale

C

MS Simulation Preliminary
LI I L I L I L | LI | L | L | L | T

SONIC Jobs

13 TeV
II|III

®0.24
c

g 022
oo
HC_) .
g 016
< 0.14
Z 0.12
e

3 0
N 0.08
T 0.06
£ 0.04

2 002}

] --------- CPU "Direct-inference" Jobs

o LI - L | I | I I L : L |"|--r'r'l-+-|'1'i-4-4--|--| L
3 32 34 36 38 4 42 44 46 48 5
Throughput [evt/s]

 Lastly, we performed a scale-out test at GCP, using 10,000 CPU cores split into
2,500 4-threaded client jobs

e 100 Tesla T4 GPUs were used to host the MiniAOD models with a Kubernetes load
balancer to ensure even GPU usage

* Peak network usage was ~15 GB/s (total bandwidth coming into GPU cluster)

Conclusions

* Inference as a Service, implemented as SONIC in CMSSW, can help alleviate
CMS computing pressures by accelerating algorithm execution

 With SONIC, we achieve

* Increased throughput: GPUs enable acceleration of ML algorithms

* Optimizable GPU-to-CPU ratios: we can save money if looking to buy GPUs or
increase utilization of current resources

* Flexible algorithm design: Not restricted to only supported frameworks in CMSSW
* Use of remote GPUs

 Demonstrated robustness and minimal impact of potential risks
* Use of fallback servers shown to not impact workflow throughput

* Network bandwidth requirements not problematic at scales similar to true
MiniAOD workflow deployment

Future and challenges

* To run SONIC in full production, we need a GPU resources scouting
and server deployment scheme

* Currently developing a Kubernetes-based framework for dynamic server
creation and deletion

e Convert more reconstruction algorithms to ML to take advantage of
hardware-based acceleration™

* Can expand to other GPU vendors and coprocessor types with custom
backends or interoperable servers

*And potentially improve performance

