

CaTS: Integration of Geant4 and Opticks

Hans Wenzel

Soon Yung Jun Krzysztof Genser

FERMILAB-CONF-23-101

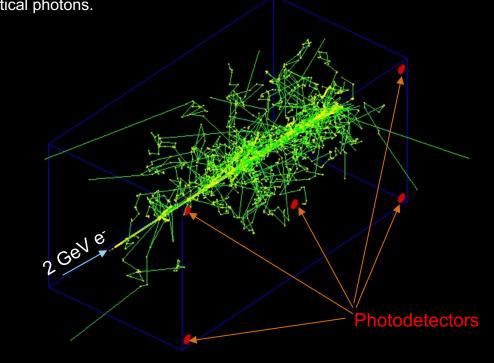
Outline

- Motivation:
 - The computational challenge for TPCs based on liquid Argon (LArTPCs).
 - Simulation of optical photons: an ideal application to be ported to GPU's.
- Opticks.
- CaTS is an advanced example Geant4 application.
 - CaTS workflow.
 - Performance.
- artg4tk/larg4: making Opticks available to the LArTPC experiments.
- Summary.

2

Integration of Geant4 and Opticks / CHEP 2023

The computational challenge for TPCs based on liquid Argon (LArTPCs):


Test Detector Geometry: Liquid Argon: x y z: 1 x 1 x 2 m (blue) 5 photo detectors (red) photon yield (no E-field): 50000 γ /MeV single 2 GeV electron (shower not fully contained)

(low Z=18, low $\rho = 1.78 \text{ g/cm}^3$).

- ~ 7x10⁷ VUV scintillation photons are produced/event.
- Using Geant4 (11.1.p01) to simulate photon generation and propagation o using a single core on an Intel[®] Core i9-10900k@ 3.7Ghz takes :
 - ~ 10 minutes/event

(Compared to **0.034 seconds/event** without optical photon simulation) \rightarrow LArTPC-Experiments use look up tables and parameterizations instead of full simulation for photon response.

Shown are only steps and particle tracks handled by Geant4, no optical photons.

Hans Wenzel

May 8 to 12, 2023

Simulation of optical photons: an ideal application to be ported to GPU's.

- Only one particle type is involved (optical photon), but many of them (~10⁷/event)→ allows for massive parallelism (low latency, no big fluctuations in computing time).
- No new particles types besides optical photons are produced.
- Only a few physics processes need to be implemented on the GPU. The processes are:
 - G4Cerenkov (generate photons),
 - G4Scintillation (Reemission) (generate photons),
 - G4OpAbsorption,
 - G4OpRayleigh,
 - G4OpBoundaryProcess,
 - G4OpWLS (not yet implemented, need it for LArTPCs).
- These processes don't need a lot of input data (collected in so called GenSteps for the Cerenkov and Scintillation processes)→ little data transfer from host to device.
- Only a small fraction of photons reach the Photodetectors and produce a PhotonHit → so very little data to transfer from device to host.
- Optical ray tracing is a well-established field \rightarrow benefit from available efficient algorithms (OptiX[®]).
- Use NVIDIA[®] hardware and software (NVIDIA[®] CUDA, NVIDIA[®] OptiX[®]).

Opticks

Opticks is an open-source project developed by Simon Blyth: <u>https://bitbucket.org/simoncblyth/Opticks/</u> See also talk at this conference. There are 2 major versions: legacy Opticks based on OptiX [®] 6 using the G4Opticks API and reengineered Opticks based on OptiX [®] 7 using the G4CXOpticks API. Opticks accelerates optical photon simulation by:

- Translating the Geant4 geometry to OptiX[®] without approximation.
- Implementing the Geant4 optical processes on the GPU.
- Integrating NVIDIA GPU ray tracing (accessed via NVIDIA OptiX[®]).

G4(CX)Opticks provides an API to interface Geant4 and Opticks. The Geant4 advanced example CaTS (Calorimetry and Tracking Simulation) uses this API to implement a hybrid workflow:

- Geant4 on the CPU/host handles all particle types but the optical photons.
- The Geant4 Cerenkov and Scintillation processes are still used to calculate the number of optical photons to be generated at a given step and to provide all necessary quantities to generate the photons on the GPU.
- The information collected is the so called GenStep which are different for Cerenkov (needs e.g. betainverse) and Scintillation (needs e.g. scintillation time constants).
- Copying GenSteps to the GPU \rightarrow more efficient than e.g. copying optical photons.
- Generation and tracing of optical photons is offloaded to Opticks (GPU/device) at stepping level whenever a certain number of photons is reached.

May 8 to 12, 2023

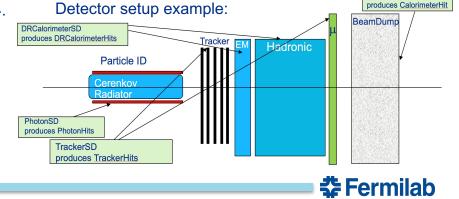
Opticks will only run on: NVIDIA® hardware and NVIDIA® software Software: NVIDIA® CUDA, OptiX OptiX 6: allows to select/deselect RTX OptiX 7: RTX cores are used when present (RTX is not usually available on HPC systems)

	Graphics card	Data center GPU
	GeForce RTX 3090	A100
architecture	NVIDIA Ampere	NVIDIA Ampere
Compute capability	8.6	8.0
CUDA cores	10,496	8192
Boost Clock	1,7 GHz	1.41 GHz
Memory	24 GB	40GB
Memory bandwidth	936 GB/sec	1555 GB/sec
RT cores	82 (2 nd -gen)	none
Tensor cores	382 (3 rd -gen)	432 (3 rd -gen)
Shared Memory size	64kB	up to 164 kB

SM				
Warp Scheduler + Dispa	ich (32 thread/cik)	Warp Sched	uler + Dispatch (32 thread/cik)
Register File (16,	384 x 32-bit)	Regist	ter File (16,384 :	x 32-bit)
FP32 FP32 iNT32	TENSOR	FP32 * INT32	fuac	TENSOR CORE
LDST LDST LDST Warp Scheduler + Dispa Register File (16,1			uter + Dispatch (ter File (16,384 ;	
FP32 FP32 + INT32	TENSOR	FP32 INT32	FP32	TENSOR CORE
Ampere SM Hol	ding 16x Int32+	1032 and 16)	100 C	der cores)
		he / Shared Memory		
Tex	Tex	Tex		Tex
	RTC	ORE		5

RT core: based on bounding volume hierarchy (BVH), a commonly used acceleration structure in ray tracing, ray-triangle intersection.

Hans Wenzel


6

May 8 to 12, 2023

CaTS: Calorimeter and Tracker Simulation

- Advanced Geant4 example application (introduced with Geant4 11.0).
- No changes to Geant4 required to integrate Opticks! Only make use of provided interfaces: UserActions, Sensitive Detectors...
- Modular and extendible, allows to build detector setups from predefined components.
- Use GDML with extensions for flexible Detector construction. GDML extensions are used to:
 - Assign sensitive detectors to logical Volumes. A library of various sensitive detectors is provided.
 - Assign step-limits and energy cuts to logical Volumes.
 - Assign visualization attributes.
- · Creation of Hit collections and ROOT IO based IO thereof is automated.
- Currently supports legacy/new Opticks interface.
- Uses G4PhysListFactoryAlt to define and configure physics at runtime via command line option ../CaTS -g simpleLArTPC.gdml -pl 'FTFP_BERT+OPTICAL+STEPLIMIT' -m time.mac
- G4(CX)Opticks/Geant4 is a runtime/build time option.
- Collection of Scintillation and Cerenkov Gensteps by Geant4.

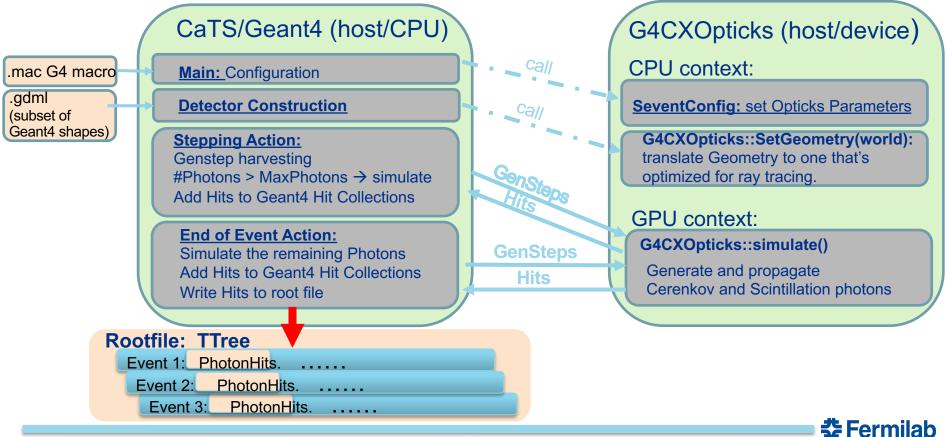
https://geant4.kek.jp/lxr/source/examples/advanced/CaTS/, https://github.com/hanswenzel/CaTS (development)

May 8 to 12, 2023

CalorimeterSD

Recent developments

Re-implementing Opticks for OptiX [®] 7 required huge changes due to the new and very different OptiX [®] 7 API \rightarrow This gave an opportunity to redesign the Opticks code. Goals of re-implementation: flexible, modular GPU simulation, easily testable, less code. For details see previous presentation.


- CaTS has been modified to use the new Opticks API. The CaTS workflow has been adjusted accordingly. User Actions were utilized → no changes to Geant4 itself required.
- CaTS/Opticks were modified to work with Geant4 API changes introduced in 11.1.
- With legacy versions of Opticks (based on Optix 6) we observed speed ups in the order of 2x10².
 Evaluation and optimizing the performance with recent updates is in progress.

8

CaTS workflow using the new version of Opticks based on OptiX[®]7:

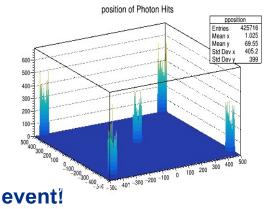
Number of

1

CPU threads

Performance:

Hardware:	
CPU	Intel [®] Core i9-10900k@ 3.7 GHz, 10 CPU cores
GPU	NVIDIA GeForce RTX 3090 @ 1.7 GHz, 10496 cores
Softwa	re:
	10496 cores


Geant4: 11.0, Opticks based on OptiX[®] 6

Geant4

330

[sec/evt]

|--|

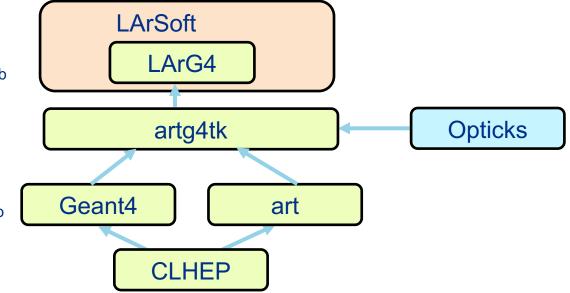
→It becomes feasible to run full optical simulation event by event!

189x

Gain/speed up

Kay 8 to 12, 2023

Opticks


[sec/evt]

1.8

artg4tk/larg4: making Opticks available to the LArTPC Experiments

artg4tk:

- General Geant4 module for the art Event Processing Framework used by various Fermilab experiments: <u>https://github.com/art-frameworksuite/art-g4tk</u>
- Very flexible. Geant4 User Actions (Stacking, Stepping, Tracking, Event, Run...) are implemented as Art Framework Services which can be selected and configured at run-time.
- Physics and Detector configuration is identical to CaTS.
- Geant4 data objects (e.g. Hits) are added to the RootIO based art event record.

larg4: is based on artg4tk. It is a module for LArSoft: https://larsoft.org/about-larsoft/. All LArSoft dependencies (e.g. lardata objects) are encapsulated here: <u>https://github.com/LArSoft/larg4</u>

In the process of integrating Opticks with artg4tk/larg4,

- Geant4 advanced example CaTS was made available.
- It demonstrates a Geant4 hybrid workflow where the generation and tracing of optical photons is offloaded to a GPU using Opticks, while the rest of the simulation is done on the CPU.
- Modified Opticks to work with the latest version of Geant4 (v11.1.p01).
- In the process of integrating Opticks with artg4tk/larg4 to make it available to the LArTPC based experiments.

