

Enabling INFN-T1 to support heterogeneous computing architectures

S Dal Pra, D. Spiga et al.

CNAF Tier-1 (Grid / Batch computing)

- Providing ~ 715KHS06 / 59Kcores, 1010 Compute nodes to ~ 23 WLCG communities (HEP / astroparticle / astrophysics) and ~ 30 local research groups.
- 6 x HTCondor-CE 5.1.6 on top of HTCondor 9.0.17
- Moving to techopolo (→ #392, track 7, 9 May 2023, 12:00)
 - Opportunistic usage of Computing resources from <u>Leonardo</u> HPC is foreseen by an early agreement
 - o x86_64 CPU, 128 cores, 512GB RAM, 4xAmpere GPU, Slurm batch system
- Initial investigations on: Marconi 100
 - o **PPC** CPU, 192 cores, 256GB RAM, 4xV100 GPU, Slurm batch system

Our Goal: seamless integration of opportunistic and pledged resources.

Marconi 100: Power AC922 "Whiterspoon"

- 980 CN + 3 login nodes
- 2x16 core **IBM 8335-GTG**@2.6GHz
 - Up to 128 threads
- 4xNVIDIA V100 GPUs
- RAM: 256 GB/node
- Local disk: 1.6TB NVMe
- Shared Disk Space: 8PB (GPFS)
- Slurm scheduler (whole node/24h)

Figure 2-5 The Power AC922 server model GTH logical system diagram

Pledged vs Opportunistic

CNAF (Pledged)	M100 (Opportunistic)	General Case (Opp.)
Grid+local, HTC-CE / HTC	Local, Slurm	Batch, Cloud, K8S,
1 or 8 cores, ≥ 3.5GB/core	Whole node, 2GB/core	
x86_64	PowerPC, NVIDIA V100	X86_64, ARM, PPC, GPU
72h or more runtime	24h max runtime	
Full network for cluster operation,sw distribution (cvmfs) and data transfer	Agreed Outbound Connectivity toward known networks (CNAF, CERN) + cvmfs	Outbound connectivity is assumed. CVMFS is a strong requirement

Jobs must be able to run with the available QoS → 2 problems:

- Experiment side: Have suitable payloads to run on opportunistic resources
- Provider side: steer most suitable jobs there

Note: Opportunistic != Free

M100: From Slurm CN to CNAF WN

- Two simple ideas:
 - have a HTCondor STARTD running as Slurm Job
 - Detect pending jobs for ppcml64 @CNAF and trigger resource creation

How to implement it

- From a M100 Login Node submit a Slurm job
- 2. At start, it launches a Singularity container which
 - o activates an HTCondor STARTD, which
 - o authenticates to the Central Manager and join the CNAF pool
 - CCB (Connection Control Broker 9618 port)
 - IDTOKENS for authentication
 - Becomes available to execute jobs submitted to HTCondor-CE at CNAF.
 - StartJobs expression to only accept proper jobs

CNAF: Steering jobs to M100

Main Idea: Make Jobs for M100 identifiable at submit time. Needed information must be available at the JobRouter of the HTC-CE

Different approaches possible, each has pros and cons

- 1. Set a custom attribute in the Submit File:
 - o Example: +WantRoute = "cms m100"
 - Define a JobRouter entry to add Arch == "ppc641e" to the Requirements of the routed job
- Set an agreed claim in the access token (SCITOKEN, IAM Token, EGI Check-in Token)
 - Several token claims can be inspected as Classad Attributes by the JobRouter
 - Latest HTCondor versions (10.4.1) makes possible further customization

M100: Autoscaling availability

Goals:

- Trigger instantiation of M100 resources (i.e. submit Slurm wholenode jobs) only when suitable payloads are queued at CNAF.
- Avoid having unused PPC nodes running without payload.
- A script running on a M100 login node:
 - o checks CNAF queues to for jobs awaiting PowerPC resources
 - checks Slurm for running and pending wholenode jobs (Slurm_R, Slurm_P).
 - If pend_CNAF > 0, it submits some wholenode jobs to Slurm.
 - If pend_CNAF == 0, Idle Slurm jobs (the hosted STARTD has no jobs) are terminated. This ensures that M100 resources are accounted only upon real need. Note: this cannot work with late binding (i.e. pure pilot) model

The Model

8. Executes a HTCondor STARTD configured with IDTOKEN credentials and proper StartJobs policies

9. The STARTD authenticates with the CNAF HTCondor pool through the Connection Control Broker

Generalizations

The above model is quite generic and can be easily generalized for different computing architectures / infrastructures. This has been actually done:

Herd: K8S WN-pod instantiated via Cloud for preliminary tests, preparing for usage on ASI resources

UniBO - Open Physics Hub: Slurm Batch, x86_64 Compute Nodes (debian) with containerized STARTD

Textarossa: ARM architecture, see next slides

- E4 is a company with historical ties with CNAF and CERN computing
- Using hardware form the TEXTAROSSA EU project (EuroHPC), we had access to 2 Ampere Altra MAX nodes:
 - Dual 128 cores Neoverse N-1; the variant with 3.0 GHz (M128-30)
 - 256 cores per node
 - 2 memory settings: 256 GB and 1 TB
 - Fast local disk, poor WAN networking

- HepScore: 3884 HepScore23
- CMS: we were able to insert the machines in the production system, and start a the standard validation machinery
 - Unfortunately, only @ pileup 0, due to the networking
 - Amazing results, still: less than 1% errors
 - In course of validation (but physics validation not conclusive w/o pileup)

Validation process

Technical integration successfully verified: CMS sees ARM resources as CNAF local computing capacity

Two campaigns of data generation have been successfully completed

- Run3 scenario
- Phase2 conditions

Samples are injected in the CMS computing infrastructure and ready for the next step

Observations

Dealing with Heterogeneous resources exposes several points worth considering

- **IDTOKENS** management: some improvement needed (distribution, revocation)
- **CCB** is a potential bottleneck? (keep sandbox transfer at a minimum!)
- Pilot "late binding" can be "too late":
 - o a precious resource can be dedicated to a pilot who has no suitable payload to run there
 - The QoS at the (opportunistic) resource is unacceptable by the payloads
- **Declaring needs in the Access Token** could help, better than adding custom attributes in the submit file: The "VO manager" can map execution privileges to groups, such as: "GPU_<model>", "aarch64", "ppc64lm", thus controlling who can use special resources.
 - Easy to agree between small experiments and Site Administrators
 - Latest HTCondor (10.4.x) enables custom Token validation PLUGIN (custom token → user mapping)

"This work is partially supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU".

