EEEEEEEEEEEE OfflCe 01

#Fermilab :L;ENERGY Science

- - = 3
- e : ,’{w 3 i s 53 T A .
; z - o /_,, s && : . o P > . ™
F £2 — 4 = & - N E \ ama p— B
=t i . /“ ~ e’ M - e o=,

Performance of Heterogeneous Algorithm Scheduling in
CMSSW

Andrea Bocci', Christopher Jones?, Matti Kortelainen? for the CMS collaboration

'CERN 2FNAL -
CHEP 2023 9 May 2023

2= Fermilab
Introduction

« CMS’ data processing software framework, CMSSW, has a generic mechanism to
interact with any work external to the framework
— Allows the framework to utilize the CPU thread for other work

« CMSSW has a sophisticated pattern for framework modules to interact with CUDA
— Was presented in CHEP 2019 (EPJ Web. Conf 245, 05009 (2020))
— Is used in production in CMS’ High Level Trigger (HLT) since 2022
— CMS is in process of moving from CUDA to Alpaka (A. Bocci today Track 2 17:00)

 Similar synchronization model underneath

* In this presentation we take a close look on the benefits of this pattern using
actual HLT application that was used in 2022 data taking

 I’ll start with a simplified setup and gradually add improvements towards the
production setup in CMSSW

CMS

2 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

http://dx.doi.org/10.1051/epjconf/202024505009
https://indico.jlab.org/event/459/contributions/11402/

2= Fermilab

GPU reconstruction in CMS HLT 2022

The HLT menu has total of ~4400 modules

Offloaded parts

— Pixel detector reconstruction: from RAW data
unpacking up to tracks and vertices (11 modules)

— ECAL local reconstruction (4 modules)
— HCAL local reconstruction (3 modules)

57 unique kernels, ranging from 2 ps to 7 ms
in these events

Memory pool to amortize cost of raw memory
allocations and provide asynchronous allocation interface in CUDA stream order

All offloaded modules have CPU versions that are used for reference measurement
More information were in G. Parida’s talk earlier in this session

CMS

3 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW o

https://indico.jlab.org/event/459/contributions/11822/

4

2= Fermilab
Measurements

» Use events triggered with CMS Level 1 trigger with average pileup of 65
 Measurements done on a machine like the production HLT nodes

2x AMD EPYC 7763 (Milan) CPUs + 2x NVIDIA Tesla T4 GPUs

— 2 sockets x 64 CPU cores / socket x 2 threads / core = 256 hardware threads on CPU

— Aggregated throughput of N processes x M threads/process to have total of 256 threads
» Take average of 4 executions

— Number of concurrent events 3/4 of number of CPU threads to conserve GPU memory
* No impact in event processing throughput

— Measurements start at 16 CPU threads/process to fit in the 16 GB memory of T4 GPU
» Report event processing throughput relative to CPU-only menu

CMS

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Simple starting point

5

Each CUDA-using module launches
their CUDA work by directly
interacting with the CUDA API

All these modules launch their work
into the same CUDA stream

— Mimics the behavior of the default
CUDA stream

Every CUDA-using module does a
blocking synchronization

— cudaStreamSynchronize()

15-45 % improvement compared to
CPU-only

Throughput relative to CPU-only menu

1.7

1.6

1.5 1

1.4

1.3

1.2

1.1~

1.0

2= Fermilab

—e— 1 stream, synchronous

16

32

64
Number of CPU threads / process

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

128

CMS

2= Fermilab

Add multiple CUDA streams o) —

« Each non-branching chain of
modules within an event uses 3 ———p
separate CUDA stream
.)
— Each concurrent event has its own (\

chains

» Every CUDA-using module still does
a blocking synchronization
— Tested cudaDeviceSchedule{Auto,
Spin, Yield, BlockingSync}, all
gave practically the same performance
* Reporting cudaDeviceScheduleAuto N) L J

Example module chains where
3 CUDA streams are used

CMS

6 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

2= Fermilab

Add multiple CUDA streams

« Each non-branching chain of
modules within an event uses a
separate CUDA stream
— Each concurrent event has its own

chains

» Every CUDA-using module still does
a blocking synchronization

— Tested cudaDeviceSchedule{Auto,
Spin, Yield, BlockingSync}, all

gave practically the same performance e = Y8
Number of CPU threads / process

1.7

—e— 1 stream, synchronous
1.6 —4—1£ % —#— Many streams, synchronous

1.5 -
+ 20 %
1.4
1.3 4

1.2 A

1.1+

Throughput relative to CPU-only menu

* Reporting cudaDeviceScheduleAuto

CMS

7 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

2= Fermilab
External worker mechanism

* Replace blocking waits with a callback-style solution
 Traditionally the algorithms have one function called by the framework, produce()
« That function is split into two stages

— acquire(): Called first, launches the asynchronous work
— produce(): Called after the asynchronous work has finished

* acquire() is given areference- [-
: Accelerator ! :
counted smart pointer to the task . GPU, FPGA, |
that calls produce() &y’i etc N%Q
— Decrease reference count when og\kb/ - \Qf
asynchronous work has finished CPU &/ N
— Capabile of delivering exceptions acquire() | ~ otherwork | produce()

8 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

£= Fermilab
Make each CUDA module external worker

1.7

» Use of CUDA streams stays the same

« Every CUDA module does a
non-blocking synchronization

— It follows that the modules depending
on the data of the CUDA-using module
are scheduled to be run only after the
GPU work has finished

— We use cudaStreamAddCallback() to
queue a host-side callback function
that notifies the CMSSW framework of 1.0 . , |

. 16 32 64 128
the Completlon of the GPU work Number of CPU threads / process
* cudaStreamAddCallback() is

deprecated, cudaLaunchHostFunc()
gave same performance

+1%

=
o
1

=
wu
I

=
D
1

=
w
1

=
N
I

—e— 1 stream, synchronous
T —=— Many streams, synchronous
—¥— Many streams, all modules ExternalWork

Throughput relative to CPU-only menu
(=]
=

CMS

9 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Minimize the external worker use

» Use of CUDA streams stays the same

Modules that produce only

“device-side” information do not

really need synchronization with host

— Instead we make the consuming
module to call
cudaStreamWaitEvent() in case it
would use a different stream

— Now framework can schedule the

consuming modules without waiting
their GPU work to finish

» This is the setup used in CMSSW

10

Kernels

— v

e

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

PNdN,
'

2= Fermilab

copy
to host

b

CMS

2= Fermilab
Minimize the external worker use

1.7
« Use of CUDA streams stays the same =z |11 %
U 1.6
« Modules that produce only £
“device-side” information do not g 1]
really need synchronization 9 54
— Instead we make the consuming 2 -
module to call o
cudaStreamWaitEvent() in case it 3 1.2 o= 1 stream, synchronous
would use a different stream -§‘ —#— Many streams, synchronous \0
N £ K hedule th g 1.19 —— Many streams, all modules ExternalWork
- ow ramewor can SC_ edule t e = —&— Many streams, minimal ExternalWork
consuming modules without waiting 10— " -
their GPU work to finish Number of CPU threads / process

» This is the setup used in CMSSW
— But can we do better?

CMS

11 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

2= Fermilab

More performant way to synchror}i7ze in CUDA

synchronous
all modules ExternalWork
minimal ExternalWork

minimal ExternalWork, waiting threads
|

- After trying out various options, > +2 %
replacing the £
cudaStreamAddCallback() with a § 157
separate waiting thread that calls é‘; n
cudaEventSynchronize() gave v
about 2 % higher throughput B ==
— Required creating the CUDA events 312 Mot sl Mo

with flag cudaEventBlockingSync =2 —¥— Many streams,
_g 1.19 —— Many streams,
= —4#— Many streams,

1.0 - 1

16 32

12

2023-05-09

64 128

Number of CPU threads / process

Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

CMS

2= Fermilab

Conclusions

13

Demonstrated the performance impact of the design decisions of the CUDA
module pattern in CMSSW

— Using production High Level Trigger menu from 2022 as a test bed

Good speedup (15-45 %) already from a simple single-stream with blocking
synchronization approach

Multiple CUDA streams improved the throughput by 7-20 %

Making the synchronizations non-blocking in every module had mixed impact +1 ..
-1.5%

Minimizing the synchronizations gave 1 % improvement for 16 threads

Highest throughput with our own pool of threads waiting on
cudaEventSynchronize(): ~2 % better than cudaStreamAddCallback()

— 0-4 % better than blocking synchronization
Expect these improvements be larger for longer-running kernels CMS

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

£& Fermilab
Related contributions
* G. Parida: “Run-3 Commissioning of CMS Online HLT reconstruction using GPUs”
earlier (14:30) in this session

« A. Bocci: “Adoption of the alpaka performance portability library in the CMS
software”, Track 2 today 17:00

e M. Kortelainen: “Evaluating Performance Portability with the CMS Heterogeneous
Pixel Reconstruction code”, Track X Thursday 11:45

e C. Jones: “CMSSW Scaling Limits on Many-Core Machines”, Tuesday poster
session

e P. Gartung: “Vectorization in CMSSW applications”, poster

CMS

14 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11402/
https://indico.jlab.org/event/459/contributions/11402/
https://indico.jlab.org/event/459/contributions/11824/
https://indico.jlab.org/event/459/contributions/11824/
https://indico.jlab.org/event/459/contributions/11843/
https://indico.jlab.org/event/459/contributions/11843/
https://indico.jlab.org/event/459/contributions/11874/

2= Fermilab

Spares

CMS

15 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

$& Fermilab
Impact of memory pool

« Same setup as on slide 5, but .
memory allocated with directly > 0
cudaMalloc() etc. o
« Abysmal performance (as expected) 2 g6
o
2041
[@)]
S
'E 0.2
—e— 1 stream, synchronous, raw cudaMalloc() etc
00 % 64 128

Number of CPU threads / process

CMS

16 2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

