
Performance of Heterogeneous Algorithm Scheduling in
CMSSW
Andrea Bocci1, Christopher Jones2, Matti Kortelainen2 for the CMS collaboration
1CERN 2FNAL
CHEP 2023 9 May 2023

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Introduction

2

• CMS’ data processing software framework, CMSSW, has a generic mechanism to
interact with any work external to the framework
– Allows the framework to utilize the CPU thread for other work

• CMSSW has a sophisticated pattern for framework modules to interact with CUDA
– Was presented in CHEP 2019 (EPJ Web. Conf 245, 05009 (2020))
– Is used in production in CMS’ High Level Trigger (HLT) since 2022
– CMS is in process of moving from CUDA to Alpaka (A. Bocci today Track 2 17:00)

• Similar synchronization model underneath

• In this presentation we take a close look on the benefits of this pattern using
actual HLT application that was used in 2022 data taking

• I’ll start with a simplified setup and gradually add improvements towards the
production setup in CMSSW

http://dx.doi.org/10.1051/epjconf/202024505009
https://indico.jlab.org/event/459/contributions/11402/

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

GPU reconstruction in CMS HLT 2022

3

• The HLT menu has total of ~4400 modules
• Offloaded parts
– Pixel detector reconstruction: from RAW data

unpacking up to tracks and vertices (11 modules)
– ECAL local reconstruction (4 modules)
– HCAL local reconstruction (3 modules)

• 57 unique kernels, ranging from 2 µs to 7 ms
in these events

• Memory pool to amortize cost of raw memory
allocations and provide asynchronous allocation interface in CUDA stream order

• All offloaded modules have CPU versions that are used for reference measurement
• More information were in G. Parida’s talk earlier in this session

https://indico.jlab.org/event/459/contributions/11822/

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

• Use events triggered with CMS Level 1 trigger with average pileup of 65
• Measurements done on a machine like the production HLT nodes

2x AMD EPYC 7763 (Milan) CPUs + 2x NVIDIA Tesla T4 GPUs
– 2 sockets x 64 CPU cores / socket x 2 threads / core = 256 hardware threads on CPU
– Aggregated throughput of N processes x M threads/process to have total of 256 threads

• Take average of 4 executions
– Number of concurrent events 3/4 of number of CPU threads to conserve GPU memory

• No impact in event processing throughput
– Measurements start at 16 CPU threads/process to fit in the 16 GB memory of T4 GPU

• Report event processing throughput relative to CPU-only menu

Measurements

4

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Simple starting point

5

• Each CUDA-using module launches
their CUDA work by directly
interacting with the CUDA API

• All these modules launch their work
into the same CUDA stream
– Mimics the behavior of the default

CUDA stream

• Every CUDA-using module does a
blocking synchronization
– cudaStreamSynchronize()

• 15-45 % improvement compared to
CPU-only

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Add multiple CUDA streams

6

• Each non-branching chain of
modules within an event uses a
separate CUDA stream
– Each concurrent event has its own

chains

• Every CUDA-using module still does
a blocking synchronization
– Tested cudaDeviceSchedule{Auto,

Spin, Yield, BlockingSync}, all
gave practically the same performance
• Reporting cudaDeviceScheduleAuto

Example module chains where
3 CUDA streams are used

…

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Add multiple CUDA streams

7

• Each non-branching chain of
modules within an event uses a
separate CUDA stream
– Each concurrent event has its own

chains

• Every CUDA-using module still does
a blocking synchronization
– Tested cudaDeviceSchedule{Auto,

Spin, Yield, BlockingSync}, all
gave practically the same performance
• Reporting cudaDeviceScheduleAuto

+ 7 %

+ 20 %

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

External worker mechanism

8

• Replace blocking waits with a callback-style solution
• Traditionally the algorithms have one function called by the framework, produce()
• That function is split into two stages
– acquire(): Called first, launches the asynchronous work
– produce(): Called after the asynchronous work has finished

• acquire() is given a reference-
counted smart pointer to the task
that calls produce()
– Decrease reference count when

asynchronous work has finished
– Capable of delivering exceptions

CPU

Accelerator

acquire() produce()other work

GPU, FPGA,
etc

Ev
en

t d
at

a

Callback

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Make each CUDA module external worker

9

• Use of CUDA streams stays the same
• Every CUDA module does a

non-blocking synchronization
– It follows that the modules depending

on the data of the CUDA-using module
are scheduled to be run only after the
GPU work has finished

– We use cudaStreamAddCallback() to
queue a host-side callback function
that notifies the CMSSW framework of
the completion of the GPU work
• cudaStreamAddCallback() is

deprecated, cudaLaunchHostFunc()
gave same performance

+ 1 %

- 1.5 %

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Minimize the external worker use

10

• Use of CUDA streams stays the same
• Modules that produce only

“device-side” information do not
really need synchronization with host
– Instead we make the consuming

module to call
cudaStreamWaitEvent() in case it
would use a different stream

– Now framework can schedule the
consuming modules without waiting
their GPU work to finish

• This is the setup used in CMSSW

copy
to host

Kernels

copy
to host

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Minimize the external worker use

11

• Use of CUDA streams stays the same
• Modules that produce only

“device-side” information do not
really need synchronization
– Instead we make the consuming

module to call
cudaStreamWaitEvent() in case it
would use a different stream

– Now framework can schedule the
consuming modules without waiting
their GPU work to finish

• This is the setup used in CMSSW
– But can we do better?

+ 1 %

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

More performant way to synchronize in CUDA

12

• After trying out various options,
replacing the
cudaStreamAddCallback() with a
separate waiting thread that calls
cudaEventSynchronize() gave
about 2 % higher throughput
– Required creating the CUDA events

with flag cudaEventBlockingSync

+ 2 %

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Conclusions

13

• Demonstrated the performance impact of the design decisions of the CUDA
module pattern in CMSSW
– Using production High Level Trigger menu from 2022 as a test bed

• Good speedup (15-45 %) already from a simple single-stream with blocking
synchronization approach

• Multiple CUDA streams improved the throughput by 7-20 %
• Making the synchronizations non-blocking in every module had mixed impact +1 ..

-1.5 %
• Minimizing the synchronizations gave 1 % improvement for 16 threads
• Highest throughput with our own pool of threads waiting on
cudaEventSynchronize(): ~2 % better than cudaStreamAddCallback()
– 0-4 % better than blocking synchronization

• Expect these improvements be larger for longer-running kernels

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Related contributions

14

• G. Parida: “Run-3 Commissioning of CMS Online HLT reconstruction using GPUs”
earlier (14:30) in this session

• A. Bocci: “Adoption of the alpaka performance portability library in the CMS
software”, Track 2 today 17:00

• M. Kortelainen: “Evaluating Performance Portability with the CMS Heterogeneous
Pixel Reconstruction code”, Track X Thursday 11:45

• C. Jones: “CMSSW Scaling Limits on Many-Core Machines”, Tuesday poster
session

• P. Gartung: “Vectorization in CMSSW applications”, poster

https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11822/
https://indico.jlab.org/event/459/contributions/11402/
https://indico.jlab.org/event/459/contributions/11402/
https://indico.jlab.org/event/459/contributions/11824/
https://indico.jlab.org/event/459/contributions/11824/
https://indico.jlab.org/event/459/contributions/11843/
https://indico.jlab.org/event/459/contributions/11843/
https://indico.jlab.org/event/459/contributions/11874/

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Spares

15

2023-05-09 Matti Kortelainen | Performance of Heterogeneous Algorithm Scheduling in CMSSW

Impact of memory pool

16

• Same setup as on slide 5, but
memory allocated with directly
cudaMalloc() etc.

• Abysmal performance (as expected)

