Performance of Heterogeneous Algorithm Scheduling in CMSSW

Andrea Bocci1, Christopher Jones2, Matti Kortelainen2 for the CMS collaboration

1CERN 2FNAL

CHEP 2023 \hspace{1cm} 9 May 2023
Introduction

• CMS’ data processing software framework, CMSSW, has a generic mechanism to interact with any work external to the framework
 – Allows the framework to utilize the CPU thread for other work
• CMSSW has a sophisticated pattern for framework modules to interact with CUDA
 – Is used in production in CMS’ High Level Trigger (HLT) since 2022
 – CMS is in process of moving from CUDA to Alpaka ([A. Bocci today Track 2 17:00])
 • Similar synchronization model underneath
• In this presentation we take a close look on the benefits of this pattern using actual HLT application that was used in 2022 data taking
• I’ll start with a simplified setup and gradually add improvements towards the production setup in CMSSW
GPU reconstruction in CMS HLT 2022

- The HLT menu has total of ~4400 modules
- Offloaded parts
 - Pixel detector reconstruction: from RAW data unpacking up to tracks and vertices (11 modules)
 - ECAL local reconstruction (4 modules)
 - HCAL local reconstruction (3 modules)
- 57 unique kernels, ranging from 2 µs to 7 ms in these events
- Memory pool to amortize cost of raw memory allocations and provide asynchronous allocation interface in CUDA stream order
- All offloaded modules have CPU versions that are used for reference measurement
- More information were in G. Parida’s talk earlier in this session
Measurements

• Use events triggered with CMS Level 1 trigger with average pileup of 65
• Measurements done on a machine like the production HLT nodes
 2x AMD EPYC 7763 (Milan) CPUs + 2x NVIDIA Tesla T4 GPUs
 – 2 sockets x 64 CPU cores / socket x 2 threads / core = 256 hardware threads on CPU
 – Aggregated throughput of N processes x M threads/process to have total of 256 threads
 • Take average of 4 executions
 – Number of concurrent events 3/4 of number of CPU threads to conserve GPU memory
 • No impact in event processing throughput
 – Measurements start at 16 CPU threads/process to fit in the 16 GB memory of T4 GPU
• Report event processing throughput relative to CPU-only menu
Simple starting point

• Each CUDA-using module launches their CUDA work by directly interacting with the CUDA API
• All these modules launch their work into the same CUDA stream
 – Mimics the behavior of the default CUDA stream
• Every CUDA-using module does a blocking synchronization
 – cudaStreamSynchronize()
• 15-45 % improvement compared to CPU-only
Add multiple CUDA streams

- Each non-branching chain of modules within an event uses a separate CUDA stream
 - Each concurrent event has its own chains
- Every CUDA-using module still does a blocking synchronization
 - Tested cudaDeviceSchedule{Auto, Spin, Yield, BlockingSync}, all gave practically the same performance
 - Reporting cudaDeviceScheduleAuto

Example module chains where 3 CUDA streams are used
Add multiple CUDA streams

• Each non-branching chain of modules within an event uses a separate CUDA stream
 – Each concurrent event has its own chains
• Every CUDA-using module still does a blocking synchronization
 – Tested cudaDeviceSchedule{Auto, Spin, Yield, BlockingSync}, all gave practically the same performance
 • Reporting cudaDeviceScheduleAuto
External worker mechanism

- Replace blocking waits with a callback-style solution
- Traditionally the algorithms have one function called by the framework, produce()
- That function is split into two stages
 - acquire(): Called first, launches the asynchronous work
 - produce(): Called after the asynchronous work has finished
- acquire() is given a reference-counted smart pointer to the task that calls produce()
 - Decrease reference count when asynchronous work has finished
 - Capable of delivering exceptions
Make each CUDA module external worker

- Use of CUDA streams stays the same
- Every CUDA module does a non-blocking synchronization
 - It follows that the modules depending on the data of the CUDA-using module are scheduled to be run only after the GPU work has finished
 - We use cudaStreamAddCallback() to queue a host-side callback function that notifies the CMSSW framework of the completion of the GPU work
 - cudaStreamAddCallback() is deprecated, cudaLaunchHostFunc() gave same performance
Minimize the external worker use

- Use of CUDA streams stays the same
- Modules that produce only “device-side” information do not really need synchronization with host
 - Instead we make the consuming module to call `cudaStreamWaitEvent()` in case it would use a different stream
 - Now framework can schedule the consuming modules without waiting their GPU work to finish
- This is the setup used in CMSSW
Minimize the external worker use

- Use of CUDA streams stays the same
- Modules that produce only “device-side” information do not really need synchronization
 - Instead we make the consuming module to call `cudaStreamWaitEvent()` in case it would use a different stream
 - Now framework can schedule the consuming modules without waiting their GPU work to finish
- This is the setup used in CMSSW
 - But can we do better?

![Graph showing throughput relative to CPU-only menu over number of CPU threads/process.](image)
More performant way to synchronize in CUDA

• After trying out various options, replacing the `cudaStreamAddCallback()` with a separate waiting thread that calls `cudaEventSynchronize()` gave about 2% higher throughput
 – Required creating the CUDA events with flag `cudaEventBlockingSync`
Conclusions

- Demonstrated the performance impact of the design decisions of the CUDA module pattern in CMSSW
 - Using production High Level Trigger menu from 2022 as a test bed
- Good speedup (15-45 %) already from a simple single-stream with blocking synchronization approach
- Multiple CUDA streams improved the throughput by 7-20 %
- Making the synchronizations non-blocking in every module had mixed impact +1 .. -1.5 %
- Minimizing the synchronizations gave 1 % improvement for 16 threads
- Highest throughput with our own pool of threads waiting on cudaEventSynchronize(): ~2 % better than cudaStreamAddCallback()
 - 0-4 % better than blocking synchronization
- Expect these improvements be larger for longer-running kernels
Related contributions

• G. Parida: “Run-3 Commissioning of CMS Online HLT reconstruction using GPUs” earlier (14:30) in this session

• A. Bocci: “Adoption of the alpaka performance portability library in the CMS software”, Track 2 today 17:00

• M. Kortelainen: “Evaluating Performance Portability with the CMS Heterogeneous Pixel Reconstruction code”, Track X Thursday 11:45

• C. Jones: “CMSSW Scaling Limits on Many-Core Machines”, Tuesday poster session

• P. Gartung: “Vectorization in CMSSW applications”, poster
Impact of memory pool

- Same setup as on slide 5, but memory allocated with directly `cudaMalloc()` etc.
- Abysmal performance (as expected)