
HEP-CCE

Porting ATLAS Fast Calorimeter Simulation to GPUs with

Performance Portable Programming Models

CHEP 2023
May 9, 2023

Charles Leggett for HEP-CCE

HEP-CCEFast Calorimeter Simulation for GPU Portability Studies
ATLAS needs lots of simulation
● Simulation for background modeling is paramount

for precision physics
● Lack of MC-based statistics limited results in Run-2

○ will be worse for Run-3 and beyond

A very large fraction of the simulation's computational
budget is spent in the LAr Calorimeter
● Parametrized simulation is enormously faster than

full Geant4 simulation (complex detector geometry)

FastCaloSim is small, self-contained, has few
dependencies, and already has a CUDA port
● Offloading simulation to GPUs can help stay within

ATLAS's compute budget
● 3 "kernels": workspace reset, simulate, reduce plus

small data transfers from device to host
● Code organized to share maximum functionality

between all implementations

2

HEP-CCEPortability Solutions

CUDA Kokkos SYCL HIP OpenMP alpaka std::par

NVIDIA
GPU

intel/llvm
compute-cpp hipcc

nvc++
LLVM, Cray GCC,

XL nvc++

AMD GPU openSYCL
intel/llvm hipcc

AOMP
LLVM
Cray

Intel GPU
oneAPI

intel/llvm
CHIP-SPV: early

prototype
Intel OneAPI

compiler prototype oneapi::dpl

x86 CPU
oneAPI

intel/llvm
computecpp

via HIP-CPU
Runtime

nvc++
LLVM, CCE,

GCC, XL

FPGA via Xilinx
Runtime

prototype
compilers

(OpenArc, Intel,
etc.)

protytype via
SYCL

3

GPUs are becoming dominant source of computing power in HPCs
● Multiple competing architectures: NVIDIA, AMD, Intel
● Different programming languages for each architecture
● Experiments lack human resources to re-code for each

architecture

Investigate portability APIs as part
of HEP-CCE/PPS's mission
● Kokkos
● SYCL
● OpenMP
● alpaka
● std::execution::parallel

● products are
rapidly evolving

● some hope of
seeing emergence
of industry
standards at the
language level

HEP-CCEKokkos
C++ abstraction layer that supports parallel execution and data management for
different host and accelerator architectures
● host and device parallel backends must be explicitly specified at library compile time
● exercised NVIDIA, AMD, Intel, serial CPU and multi-core CPU backends

Kokkos performs similarly to "native" for simple computational kernels
● overheads from initialization of

Kokkos::Views and extra launch
latencies

● multicore: 2.5x perf w/ 12 threads
● requires explicit initialization and

finalization
● no support for jagged arrays
● excellent developer community

and support

4

lo
w

er
 is

 b
et

te
r

HEP-CCESYCL
Created by Khronos group, supported by Intel, cross platform C++ specification
● rapidly evolving implementations over the past 3 years
● different backends may require different compilers (Intel / llvm / openSYCL)
● more verbose than CUDA, though similar to Kokkos for memory management

when using buffers
● DAG-based runtime satisfies inter-kernel

data dependencies (buffers)
○ USM requires more explicit control from

developer, but generally more performant

Near native performance
● Intel's CUDA→SYCL migration tool

somewhat useful for ideas and boilerplate
● exercised Intel, NVIDIA, AMD backends

5

lo
w

er
 is

 b
et

te
r

HEP-CCEOpenMP
Directive-based programming models.
● Specifications for parallel execution on different host and accelerator

architectures
● “Target offload” model adopted by many community (LLVM Clang, GCC) and

vendor compilers (Nvidia, AMD, Intel)

Performance varies across compilers and
hardware

6

● Easy to implement, does not require major
changes to the C++ code

● Extracting performance requires fine tuning
● Specialized operations (e.g. atomic) less

performant than CUDA
● under active development

Related poster: Porting ATLAS FastCaloSim to GPUs with
OpenMP Target Offloading

lo
w

er
 is

 b
et

te
r

HEP-CCEalpaka
Abstraction layer similar to Kokkos. C++ header-only library, supports wide range of
compilers (g++, clang, MS Visual Studio), portable across platforms (Linux, MacOS,
Windows)
● Host and device parallel backends must be specified at library compile time
● Supports CPU (C++ Threads, Intel TBB, OpenMP) and GPU (CUDA, HIP) backends

alpaka kernel performance is comparable with
native implementations
● Kernels must be wrapped into alpaka function

objects (minimal overhead)
● Memory operations are performed using

reference-counted smart memory buffers
● Task parallelism is implemented using

blocking and non-blocking queues

7

Related poster: Porting ATLAS FastCaloSim to GPUs with alpaka
and std::par

lo
w

er
 is

 b
et

te
r

HEP-CCEstd::execution::parallel
C++17 standard for parallel execution of algorithms
● no low level control of device
● not intended to be a CUDA replacement, but a

stepping stone to GPU usage

Not a true "portability layer". Yet.
● NVIDIA (via nvc++) and Intel (dpl)
● can't compile ROOT: use g++

○ complex compiler wrapper and linker issues

Data automatically migrated to device on page faults
● re-copy memory allocated with g++
● odd behaviour with AMD CPUs

For C++17, requires a "CountingIterator" for indexed
access to containers.

Uses Thrust to implement code on GPUs
● excellent performance for "simple" kernels with

adequate workloads, but poor for small workloads

8

lo
w

er
 is

 b
et

te
r

HEP-CCEConclusions
FastCaloSim is a simple testbed that can be used to explore different APIs
● Simplicity also hides issues that more complex project would expose
● Can achieve bitwise reproducibility with appropriate compiler flags, floating

point precision, and choice of RNG

There are strengths and weaknesses for each portability layer
● For simple projects, they all perform equally well (with tuning)
● Interaction with external libraries should be considered
● Excellent support for Kokkos and SYCL

○ alpaka has good support, but limited user base
● OpenMP is most widely supported API, and broadly used on HPCs

○ highest variability with compiler flavours
● std::par / ISO C++ is rapidly evolving, offers very low entry bar to usage

○ best chance to embrace a standard, functionality will grow with C++26
(std::async)

9

HEP-CCE

fin
10

This work was supported by the U.S. Department of Energy, Office of Science, Office of High
Energy Physics, High Energy Physics Center for Computational Excellence (HEP-CCE). This
research used resources at Argonne Leadership Computing Facility, NERSC and BNL Scientific
Data and Computing Center.

