
HEP-CCE

Parallel I/O libraries for managing HEP experimental Data

Amit Bashyal*,Christopher Jones,Kyle Knoepfel,Patrick Gartung,
Peter Van Gemmeren, Saba Sehrish, Suren Byna

on behalf of HEP-CCE

9th May, 2023

1

HEP-CCEComputing Resources for Future HEP Experiments

2

CHALLENGE:
Increased computing requirements over coming
years.

SOLUTION:
HPCs can fulfill the computing needs through
the era of HL-LHC (Run 4) and DUNE.

2

See Charles Leggett’s talk for more details.

https://indico.jlab.org/event/459/contributions/11821/

HEP-CCEI/O and Storage in the HPCs
● Differences in HTC (High Throughput Computing) and HPC (High Performance

Computing) resources → Cannot directly move HEP computing workflow into HPCs
● HEP-CCE I/O and Storage studies the HEP general computing framework in the

HPCs.
○ Storage: Writing data in storage format supporting parallel I/O
○ I/O: Performing parallel I/O on HEP data with minimal changes on existing computing

workflow
○ Optimization: Tuning of parallel libraries to optimize the performance
○ Data Mapping: I/O performance based on various ways data is written in HPC friendly format

3

● Test-framework development
○ Experiment agnostic: Should work for common HEP data models
○ Parallel I/O of the HEP data using MPI (Message Parsing Interface) and HDF5 libraries
○ Multi-threading using TBB libraries
○ HDF5 and MPI parameters tuning to optimize I/O and storage

https://github.com/hep-cce2/root_serialization

HEP-CCE

4

HPCs use parallel file systems for data-storage
and access.

HEP Requirements for the HPC Storage Systems

4

HPCs have an established I/O software stack used
to support parallel file system

● High Level libraries can hook into the HPC I/O stack.
● Allows us to take advantages of optimizations such as

collective I/O

HEP-CCE
HEP Data and ROOT Data Model

● ROOT has been workhorse of HEP experiments
○ Data processing, storage and analysis

● HEP data models are complex
○ Using C++ language features: pointers,

inheritance, polymorphism
● Use ROOT to read and write data into ROOT::TTree

○ TTrees store data of any types (TBranch)
○ Use of internal libraries, metadata handlings

and functionalities for efficient and scalable
I/O

Tree

Branch-1
(int)

Branch-2
(float)

Branch-N
(foo)

HEP Data ROOT HTCsWorks best inOptimized for

5

https://root.cern.ch/

HEP-CCE
HDF5 Data Model

H5::File

H5::Group A

H5::Group B

H5::Dataset B(1)
H5::Dataset B(2)
…
…
H5::Dataset B(x)

H5::Dataset A(1)
H5::Dataset A(2)
…
..
H5::Dataset A(x)

H5::Dataset AB(1)
H5::Dataset AB(2)

File stores the data.
Groups are used to organize
data objects.

● Data written in Datasets.
● Datasets can be:

○ Grouped together to
organize data objects

○ Shared among groups
● Store H5::Attributes for metadata

● MPI libraries implemented to
perform parallel I/O on the
HDF5::Datasets

HDF5 File needs to be opened with
the MPI Flag to enable the parallel
I/O.

6

HEP-CCE

Data Product (X)
Event 1
Event 2

..

Data Product (Y)
Event 1
Event 2

..

ROOT to Serialize

ROOT to Serialize

H5::Dataset

Data Products are
experiment specific C++
objects usually written in
ROOT format.

Use ROOT as common
tool to serialize C++
objects into byte stream
array buffers

HDF5 Datasets store serialized
data products with mapping
optimized for parallel I/O. Mapping
is independent of experiments.

HDF5 as Data Storage Format

Additional H5::Dataset to store
navigational information like buffer
sizes of events in X and Y.

7

HEP-CCE

Leveraging HDF5 for parallel I/O

8

HEP-CCE

MPI rank 0 MPI rank 1 MPI rank 2 MPI rank 3

Events

Read/Input

3 4 7 8 11 12 15 16

Write happens in batches of
2 events per process

First parallel
write

Second
parallel
write

1 3 4 5 6 7 82 9 10 11 12 13 14 15 16

1 2 5 6 10 13 149

Parallel (Collective) I/O using HDF5

All processes participate in
I/O on a single file.

9

0 2 4 6External MPI implementation to
calculate buffer-size in each

parallel process

HEP-CCEParallel I/O with HDF5

10

Test done in a single node
Batch size of 100 events

Throughput = (Number of Events processed)/
(Application Run time)

For Parallel I/O:
4 parallel processes
Threads per Rank: #Threads/4

● Total Throughput:
 (Throughput per rank)
X(MPI Ranks)

● Test with 64 threads per
node.

I/O Calls Fraction of Total I/O
Time

MPI calls (external to HDF5) 14%

Write data into HDF5 file 32%

Other (including serialization) 54%

HEP-CCEExtending the Test Framework

11

Data Products as
Complex C++ Objects

(In Memory)

HPC Friendly Data
Products

HDF5 Format

Translation
(Using ROOT)

Write

● Use ROOT to serialize HEP data products
to make it HPC friendly.

● Collective writing of data into HDF5 file

● HPCs rely on both CPU and GPUs to achieve
high computational capability.

● Fully utilizing HPC resources requires to use GPU
resources as well.

● Serialized data cannot be offloaded into the GPUs
directly.

● Using GPUs might need different data
organization.

HEP-CCEExtension to Direct GPU OffloadingData Products as
Complex C++ Objects

(In Memory)

HPC Friendly Data
Products

HDF5 Format

Translation
(Using ROOT)

Write Offload into GPUs
Directly

HPC Friendly Data
Products

HPC Friendly
Data Products

(In Memory)

HDF5
Format

Write

Design Data Model that is
HPC (GPU) friendly

HEP data needs to
serialize/deserialize using
ROOT.

Complex objects cannot
be offloaded directly into
the GPUs.

GPU

12

Future WorkOfflo
ad

HEP-CCEConclusion
● Developed test framework which can perform I/O operation on HEP data using

HDF5+MPI libraries
○ Snowmass white paper based on this work presented in the computational frontier

■ [https://arxiv.org/abs/2203.07885]
● Identify limitations and possible solutions to enable/optimize parallel I/O for

the HEP data
■ Requires to adopt HPC friendly storage like HDF5 → ROOT as a tool to write data into HDF5
■ Data mapping and event batching, tuning of HDF5 parameters

● Developed mechanism to assist existing HEP experiments to write existing
data models in HPC friendly format

■ ATLAS has developed a proto-type that supports writing data into HDF5 using ROOT serialization
■ Studies with parallel I/O could help to evaluate DUNE use case of DAQ raw data

● Developed mechanism to adopt new storage backends will help in future
migration (even to ROOT::RNtuple)

13

HEP-CCEACKNOWLEDGEMENT

This work was supported by the U.S. Department of
Energy, Office of Science, Office of High Energy

Physics, High Energy Physics Center for Computational
Excellence (HEP-CCE)

14

HEP-CCE

BACKUP

15

HEP-CCE

16

Batch size 100
64 threads per node
Test done in 1 node.

5000 events per thread

Average throughput in each rank to process
total events (320000) as a function of total
MPI ranks.

64 threads per rank

1 thread per rank

HEP-CCEMapping HEP data to HDF5

17

HEP-CCE

18

HPCs use parallel file systems for data-storage
and access.

• (Hierarchical Data Format v5) HDF5, PnetCDF etc
provide high level I/O libraries
• Interface between user and low level I/O
• High Level Libraries to deal with usually complex

mid-level parallel I/O (like MPI I/O).
• Parallel I/O: Multiple processes performing I/O on a

single file in parallel
• Process: An instance of a framework which may

support multi-threaded application

HEP Requirements for the HPC Storage Systems

18

https://www.hdfgroup.org/solutions/hdf5/

