
Performance Portability with Compiler 
Directives for Lattice QCD in the Exascale Era

May 8-12, 2023
CHEP2023, Norfolk, VA

Meifeng Lin, Mohammad Atif
Computational Science Initiative, Brookhaven National Laboratory



Lattice QCD
• Lattice Quantum Chromodynamics (QCD) is a numerical 

framework to simulate the strong interactions between 
quarks and gluons. 

• Continuous 4D space-time => 4D lattice after discretization
• Physical observables calculated from lattice QCD provide 

important insights to the QCD theory through comparisons 
with experimental results, e.g. 
• Internal structures of protons, pions, etc.
• Bounds for new physics 

• Key Algorithm Motifs 
• Markov Chain Monte Carlo 
• Sparse matrix inversions

• Computationally expensive; often requires years of running on 
leadership-class supercomputers to achieve %-level errors. 

quarks'

gluons'

Illustration of a 3D lattice

Visualization of QCD topological 
charge density. Credit: Brookhaven 
National Laboratory



Exascale Meets Lattice QCD
• Exascale HPC systems in the US will feature 

different types compute accelerators, each with 
own native/preferred programming API

• Portability across different architectures is 
essential!

Aurora

Perlmutter (Pre-Exascale)

Frontier

NVIDIA GPUs (CUDA)

Intel GPUs (SYCL) AMD GPUs (HIP)

• ECP Application Development for Lattice QCD

• 4 DOE labs: ANL, BNL, Fermilab, Jefferson Lab

• 7 university partners: Boston University, 
Columbia University, University of Illinois, 
Indiana University, Stony Brook University, 
University of Utah, William and Mary

• 4 Working Groups targeting different areas:
• Workflow/Contractions
• Critical Slowing Down
• Linear Solvers

• Data-Parallel API

Workflow

Applications

Algorithms

Data Parallel Frameworks

Libraries



Exascale Lattice QCD Software Suite

AMD 
GPU

Intel 
GPU 

NVIDIA 
GPU

Target

Multi-pronged 
approach

Currently 
focused on  
architecture-
specific 
programming 
models for best 
performance

Also exploring 
OpenMP 
offloading for 
better 
portability 

Chroma MILC CPS HotQCDApplications

QUDA GridLibraries

CUDA SYCL/DPC++HIP OpenMP
Programming 
Model



The Grid C++ QCD Library

Data Layout for Lattice QCD
• Canonically use volume-size Arrays of Structs (site-local objects) 

• psi[t][z][y][x][Ns][Nc][2]
• Site-local operations highly nonlinear
• Not SIMD friendly

• Could also rearrange the indices: make one of the lattice dimensions inner index
• psi[t][z][y][Ns][Nc][2][x]
• Could potentially vectorize over x
• Choice of Lx becomes inflexible (has to be multiples of the SIMD length)

• Further decompose the lattice into sub-lattices (virtual nodes) [P. Boyle, 1512.03487]

 16
SIMD lanes

Mapping SIMD Data Layout Onto GPUs

• Same SIMD layout can also work on GPUs
• Map SIMD lanes onto GPU threads, and “virtual nodes” onto thread blocks
• Basically treat GPUs as very wide SIMD machines

GPU threads

A thread block

 19

• Grid[1] is a C++ library for lattice QCD

• Initially designed for SIMD architectures with long 
SIMD length (Intel Knights Landing, Skylake, etc.). 

• Arranges the data layout as if the lattice is divided 
into virtual “sub-lattices”.

• Each sub-lattice uses one SIMD lane. 

• Same data layout can be mapped to GPU architectures

• SIMD lanes on CPUs map to GPU threads

• Requires some data manipulation under the hood

Data mapping on SIMD architecture

Data mapping on SIMT architecture

[1] P. Boyle et al., arXiv:1512.0348, https://github.com/paboyle/Grid



Grid’s Performance Portable Design
• Header file with macros to encapsulate architecture-dependent implementations

• Common MemoryManager API for dynamic memory allocation on different architectures

#ifdef GRID_NVCC
#define accelerator __host__ __device__
#define accelerator_inline __host__ __device__ inline
#define accelerator_for (…) { //CUDA kernel}

#elif defined (GRID_OMP)
#define strong_inline __attribute__((always_inline)) inline
#define accelerator
#define accelerator_inline strong_inline
#define accelerator_for(…)  thread_for(…) //for loop with #pragma omp parallel for

void *MemoryManager::AcceleratorAllocate(size_t bytes){
…
ptr = (void *) acceleratorAllocDevice(bytes);

}

Architecture-specific 
implementations 



GridMini
www.github.com/meifeng/GridMini

• A substantially reduced version of Grid for 
easy experimentation with different 
programming models. 

• Retains same Grid structure: data 
structures/types, data layout, aligned 
allocators, macros, …

• Only keeps the high-level components 
necessary for the benchmarks.

• SU(3)✕SU(3) benchmark: STREAM-like 
memory bandwidth test

• Important as LQCD is bandwidth bound. Also 
data movement is the major challenge when 
porting to GPUs. 

Benchmark_su3

LatticeColourMatrix z(&Grid); //Arrays of SU(3)
LatticeColourMatrix x(&Grid); //Arrays of SU(3)
LatticeColourMatrix y(&Grid); //Arrays of SU(3)

double start=usecond();
for(int64_t i=0;i<Nloop;i++){

z=x*y;
}
double stop=usecond();
double time=(stop-start)/Nloop*1000.0;

double bytes=3*vol*Nc*Nc*sizeof(Complex);
double flops=Nc*Nc*(6+8+8)*vol;
double bandwidth=bytes/time; //GB/s
double Gflops=flops/time;    //0.9 flops/byte SP7



Different Programming Models Implemented

• OpenACC/OpenMP

• Pros: Compiler directives-based approach; easy to add to 
existing code; portable across many platforms.

• Cons: Use in C++ code non-trivial; Performance dependent 
on compilers; developer has not much fine-grained control. 

• CUDA/HIP/SYCL

• Pros: Vendor-supported API. More ways to control 
performance. 

• Cons: Need to write kernels manually; More verbose; Not 
all portable to different architectures (SYCL is portable). 



OpenMP Offloading in Grid/GridMini
New macro definitions for accelerator_for, accelerator_inline etc.

MemoryManager with OpenMP APIs

#elif defined (OMPTARGET)
#define accelerator_inline strong_inline
#define accelerator_for(iterator,num,nsimd, ... )  \
{                                                  \

_Pragma("omp target teams distribute parallel for”) \ naked_for(iterator, num, { 
__VA_ARGS__ }); \
}

inline void *acceleratorAllocDevice(size_t bytes) {
int devc = omp_get_default_device();
ptr = (void *) omp_target_alloc(bytes, devc);

}

Can also specify # 
of threads/blocks

Unified Shared/Virtual Memory for Comparison
#ifdef OMPTARGET_MANAGED

if ( ptr == (_Tp *) NULL ) auto err = cudaMallocManaged((void **)&ptr,bytes);

Compute

Data



GridMini Performance on NVIDIA GPU
● llvm map: explicit data mapping with 

OpenMP offloading with malloc as the 
memory allocator

● llvm managed: OpenMP offloading with 
cudaMallocManaged as memory allocator

● llvm map+managed: explicit data 
mapping with cudaMallocManaged as 
memory allocator

● nvcc managed: CUDA implementation 
with cudaMallocManaged (same data 
layout; no CUDA-specific optimizations)

● Compiler Version: 
○ clang++: llvm/12.0.0-git_20210117
○ nvcc: CUDA 11

● Hardware platform: Cori-GPU with 
NVIDIA V100 GPU

Bytes

G
B

/s

0

200

400

600

800

1.1
1E

+0
5

1.7
7E

+0
6

8.9
6E

+0
6

2.8
3E

+0
7

6.9
1E

+0
7

1.4
3E

+0
8

2.6
6E

+0
8

4.5
3E

+0
8

7.2
6E

+0
8

1.1
1E

+0
9

1.6
2E

+0
9

2.2
9E

+0
9

3.1
6E

+0
9

4.2
5E

+0
9

5.6
0E

+0
9

7.2
5E

+0
9

llvm map llvm managed llvm map+managed nvcc managed

Bak, Seonmyeong, et al. "OpenMP application experiences: porting to accelerated 
nodes." Parallel Computing 109 (2022): 102856.

Chapman, Barbara, et al. "Outcomes of OpenMP Hackathon: OpenMP Application 
Experiences with the Offloading Model (Part I&II)." International Workshop on OpenMP. 
Springer, Cham, 2021.



Grid OpenMP offloading Performance
● Choice of # of threads/block affects 

performance. 
● OpenMP and CUDA have different optimal 

values 

11

L=24, memory footprint = 1.43E+08 bytes
Compilers: Clang-15.0.0 + CUDA-11.4



GridMini Performance on AMD GPU

● Compiler Version: 
○ Rocm4.5

● Hardware platform: BNL lambda1 with AMD 
Raedon Pro VII GPU and AMD 24-core Ryzen 
Threadripper 3960X CPU

● L=24, memory footprint= 1.43E+08 bytes
● Best performance is with 256 threads/block



Summary
• Porting full Grid to OpenMP offloading is in progress. 
• Starting from the miniapp laid a good roadmap for porting. 
• GridMini runs on NVIDIA, AMD and Intel GPUs. 
• However, moving from GridMini to Grid still exposes many issues:

• Layered abstraction makes it hard to identify bugs with data movement => often the main point
of failure.

• At the moment Grid does not compile for AMD GPUs (with rocm clang compiler), failing with 
stack size overflow. 

• Compilers are constantly evolving: Good – bugs get fixed quickly; Bad – performance can 
degrade due to internal compiler changes. 

• Performance can also depend on runtime parameters (# of threads/block, etc.) 
• important to perform manual/auto tuning. 

13



Acknowledgments
• This work was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of 

the U.S. Department of Energy’s Office of Science and National Nuclear Security 
Administration, responsible for delivering a capable exascale ecosystem, including software, 
applications, and hardware technology, to support the nation’s exascale computing 
imperative.


