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Energy Reconstruction for XENONnT 
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ENCODER: encodes input into a lower 
dimensional latent space↑ 
LATENT SPACE REPRESENTATION:  
constrains one value as the number of 
electrons in the gas gap but allows the 
others to evolve freely ↗
DECODER: decodes input from latent 
space representation ↑

LOSS FUNCTION: weighted sum of the 
mean squared error (MSE) losses below ↓

CYCLIC ANNEALING: 𝛽 evolves from 
𝛽=0 (prioritize reconstruction) to 𝛽=1 
(prioritize latent space constraint)
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ELECTRIC FIELD DRIFTS 
ELECTRONS TO GAS GAP: not 
all of the freed electrons from 
the interaction point reach the 
gas gap

SCINTILLATION SIGNAL (S1): 
incoming particle interacts with 
xenon and causes a scintillation 
signal with energy which is 
proportional to the initial 
signal’s number of photons

IONIZATION SIGNAL (S2): 
electrons which reach the gas gap 
cause a brighter ionization signal 
with energy which is proportional 
to the number of electrons at the 
interaction point

XENONnT has a 
detector target 
of 6 tonnes of 
ultra-pure liquid 
xenon [1] ↗

HIT PATTERNS: 
Photosensors 
above and below 
measure signals →

Future Work

TOTAL ENERGY

6163194 trainable 
parameters
Adam optimizer, starting 
learning rate 5e-4 
Reduce learning rate by 
factor of 0.1 if loss does not 
decrease after 5 epochs

Semi-Supervised Autoencoder

DATASET: simulated hit patterns from 
a given [0, 2000] ne

INPUT SIZE: 494 photosensors total
TRAIN/VALIDATION/TEST SPLIT: 
447500/447500/100000 hit patterns
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DYNAMIC RANGE: autoencoder can reconstruct hit patterns well without 
normalizing or log-scaling hit patterns due to skip connections [3]

ENERGY RESOLUTION: precise reconstruction is critical for rare event searches such as the 
search for dark matter evidence [2]
INTERPRETABILITY: constraining the latent space to be physically meaningful e.g. a 
variational autoencoder constrains latent parameters as probability distributions → meaningful 
parameter uncertainties
COMPUTATIONAL EFFICIENCY: simulating data through Monte Carlo methods is 
computationally expensive and time-consuming → ongoing efforts to create more efficient 
machine-learning algorithms for fast simulation
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GOAL TO IMPROVE RESOLUTION: 
the spread of the inferred number of 
electrons in the gas gap decreases as 
the inverse square root for increasing 
number of electrons ←

UNDERPREDICTION: WHY? 
currently the autoencoder 
underpredicts the number of 
electrons in the gas gap ↑
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