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Calculate the 
squared matrix 
element for new 
parameters of BSM 
physics hypothesis

Can be calculated 
analytically with 
event simulators 
like MadEvent for 
tree-level 
processes

Subject to 
technical 
constraints for 
combinatorially 
large and 
degenerate final 
states 
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Model Performance

Often required by 
physics analyses to 
extend the reach of 
physics analyses

Needed post-hoc 
i.e. only after 
unblinding data in 
the most sensitive 
phase space

Calculating exact 
reweighting 
factors or 
generating new 
signal Monte-Carlo 
can be 
prohibitively time 
consuming

 Model Interpretation
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Process Simplification

Network Architecture

Reweighting with Neural Networks (NNs)

NNs can be trained to learn the analytical reweighting  with 
truth-level hard scatter process information

Can be used as a continuous interpolator (compared to usual 
grid interpolations) within a pre-determined parametric 
hyperspace

Assumptions: Sufficient training statistics to cover the desired 
phase space

Test Case: Single of positively charged Vector-like Quarks (T) 
that can decay into third generation quarks in Wb, Ht, and Zt 
modes

Inspecting the information propagation pathways of the NN using 
Relative Neural Activity (RNA) Score
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Signal Grid 
Extrapolation
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Generating training data with large combinatorial final states can require 
prohibitively large resources

Reweighting factors can be approximated from a simplified process 
where the decays of the SM bosons and quarks are ignored

PROC-FULLDECAY

PROC-PARTDECAY

Input features: 29
Four vectors and PIDs of the four outgoing particles
Longitudinal momenta and PIDs of incoming partons
True and Target VLQ mass and width
VLQ Decay Mode (Higgs: 0, W: -1, Z: 1)

Multi-layer Perceptron with 6 hidden layers with 32, 64, 32, 32, 8, 4 
nodes, LeakyReLU activation and Huber Loss 

Training data includes VLQ samples between 1.1 and 2.3 TeV with 
relative decay widths less than 50%; trained to reweight to any 
mass-width within ± 200 GeV of true simulation mass
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Convergence Performance 
Closure Test

The test set includes 
certain mass-width 
combinations that are 
not included in the 
training data

Reweighting M = 1.3 TeV at 50% Decay Width to 
M = 1.1 TeV at 25% Decay Width

T → Wb T → Zt T → Ht

Reweighting M = 1.9 TeV at 50% 
Decay Width to M = 2.1 TeV at 

30% Decay WidthInterpolation Test

T → Wb T → Zt T → Ht

Neural pathways are almost identical for vector bosons and significantly 
different for the Higgs mode

The underlying physics leaves its imprint on the NN – the path is chosen 
by the physics!


