

mu2e Track Quality Selection in Python/Sklearn

Scott Israel, Andrew Edmonds, Boston University

FERMILAB-POSTER-22-050-V

Track Quality

- Mu2e is looking for charged lepton flavor violation in the rare process: ullet $N + \mu^- \rightarrow N + e^-$, on muonic aluminum down to a sensitivity of 10^{-16}
- Mu2e signal and background can be hard to distinguish \bullet
- Want to separate high/low quality measurements \bullet
- Select high quality measurements to boost signal sensitivity \bullet
- Used an ANN model in TMVA to do quality selection

Model Training and Test Results

ROC curve with the results from the original TMVA ANN and BDT overlayed with the Sklearn **ADA BDT and SGBC BDT** compared to cuts in TMVA. The ML models all perform very well, particularly the ANN and SGBC

- Issues
 - Neural networks are hard to diagnose with hidden layers
 - TMVA is ROOT/C++ based, lacks accessibility in documentation/tutorials vs Python
 - Students have more experience with Python, Python has a larger ML community

Example of the Decay in orbit (DIO) background burying the signal before quality selection, while the signal can be extracted without quality selection.

Goal is to make quality selected signal/background be as close to the theoretical signal/ background as possible.

- Comparing original cuts, Ada BDT, ANN, and SGBC BDT •Performance differences between ANN and SGBC are <1% •Main point: Why use a SGBC over an ANN?
- •Decision trees are simpler than neural networks, no hidden layers, easier to understand what the model is doing

Prediction time is faster

•TMVA ANN ~ 2.25e-5 s/entry • Sklearn SGBC BDT ~ 5.85e-6 s/entry

Besides some differences in normalization and scaling between TMVA and Sklearn, the Sklearn **based SGBC filters just** as well TMVA.

ANN does a good job of filtering. How can we make this process better? Higher accuracy? More efficient model?

or low quality.

- keV, label 1
- Low = mom res > 700keV, label 0
- not used for training

- Use a boosted decision tree
- Typically faster than neural networks
- Comparable performance

Model & Training Process

Used same training features as Andy et al., training features = input variables

Input Variable	Brief Description	Model is a
Perr	fit momentum error	donth of 2
nused	number of used hits	ueptitors
fexpected	fraction of expected detector elements hit	minimum
fdrift	fraction of hits without a drift distance	150 and t
fused	fraction of used hits	
terr	fit time error	trees 850,
con	fit chi-square consistency	Andy et al

SGBC with max 3, subsample 0.9, samples per leaf of the number of total same conditions as . study in TMVA

Conclusions and Summary

- In machine learning, <u>a simpler model + good training data is</u> preferred over a more complex model
- SGBC performs equally as well as ANN and is simpler, more efficient, and easier to analyze in python
- Previous track quality classification track used an ANN and ADA BDT in TMVA
- New track quality classification uses a SGBC BDT in Sklearn

Comparing the Sklearn momentum resolution performance to the TMVA performance, they both filter the low-quality tracks out of the data. The noise at the bottom is a normalization difference between Sklearn and TMVA. It is present on **TMVA** but hidden below the lower xlim

	Python Sklearn	TMVA	• Se
F1 score	SGBC_BDT: 0.75	N/A	gra cla
HQeff at	SGBC_BDT: 59%,	ADA_BDT: 57%,	• AE
0.99 LQrej	ADA_BDT: 57%	ANN: 60%	de
ROC_AUC	SGBC_BDT: 0.95,	ADA_BDT: 0.95 ,	• AN
score	ADA_BDT: 0.94	ANN: 0.95	ne

GBC = Stochastic radient boosted assifier (decision tree) DA = Adaptive boosted ecision tree

- NN = Artificial neural etwork
- Performance is comparable between SGBC and ANN, simplifies model considerably
- **SGBC is quicker than ANN in training and predictions**
- See DocDB 41505
- My code for the analysis: https://github.com/theittsco/mu2e/blob/master/ml/Final%20Versions/track_qual_training.py

Managed by Fermi Research Alliance, LLC for the U.S. **Department of Energy**

Fermi National Accelerator Laboratory

