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Introduction
Calorimeters are a crucial component for most detectors mounted on modern colliders. Their tasks include identifying and measuring the energy of photons and neutral hadrons, recording
energetic hadronic jets, and contributing to the identification of electrons, muons, and charged hadrons. To fulfill these many tasks while keeping costs reasonable, the calorimeter construction
requires good and thoughtful balancing with other components of the detector.

Much harder operation conditions during LHC’s high luminosity Run 5 and beyond (Upgrade II conditions) imply new technological and computational challenges. This requires optimization of
technologies, layouts, readouts, reconstruction algorithms to achieve the best overall physics performance for the limited cost.

LHCb detector
LHCb is one of four major LHC experiments and provides:

• Precise tests for Standard Model verification;

• Detailed studies of Charm and Beauty physics;

• Precise measurements of CP violation effects.

LHCb ECAL
The current ECAL is based on Shashlik-type modules of 3
granularities, and contains 1536/1792/2688 cells in its in-
ner/middle/outer regions, respectively.

LHCb calorimeter wall. Image credit: CERN.

Several technological options for the upgraded calorimetry are
foreseen. The most severe requirements for radiation tolerance
can be met by SpaCal modules consist of longitudinal fi-
bres acting both as scintillator and light-transporting medium.

Baseline configuration (left) and the first level of optimisation of
the cell sizes for LHC Upgrade II conditions (right). Upper right
quarter of the calorimeter wall is shown.

Figures of merit
The performance of the calorimeter consists of:

• Radiation tolerance to sustain the expected lifetime span;

• Energy and spatial resolution for good photon recon-
struction and electron identification;

• High granularity and longitudinal segmentation to facil-
itate better precision, both spatial and in energy, which
in turn improves reconstruction algorithms;

• Timing resolution enough to facilitate pileup suppression
in high-occupancy areas as well as better matching of
separate signal components.

However, the ultimate goal for the optimization process is to
achieve the dependency of the physics performance on the cost
of the configuration of the detector under study.

Models in the optimization cycle
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Models are required to be differentiable with respect to θmodel

in vicinity of the current optimization point. For non-
differentiable models the differentiable machine learning (ML)
based surrogates can be used.

Conclusions
• LHCb ECAL is a good use case for the generic problem of comprehensive optimization of the complex physics detector;

• The R&D process requires time consuming computation steps to evaluate physics performance for different detector tech-
niques and configurations;

• Automatic training using machine learning models speeds up the turnover for the performance studies and ensures consis-
tency and uniformity of obtained results.

Deep Learning reconstruction
Simulated Geant4 response is the 5x5 array of cells. They are used as base features for Spatial and Energy regressors. Time
regressor uses weighted energy deposits.

Basic features for the regressors inputs. The 5x5 di-
mension is due to the typical size of a calorimetric clus-
ter and an additional cell layer to estimate background
contributions.

The calorimetric clusters in the matrix of 30x30 cells. The same signal cluster is
enclosed by the background clusters for different pile-up conditions. From left to
right: without pile-up, nPV = 5, nPV = 20, nPV = 50. The colour represents
ln(E/MeV ) for every cell. Standalone GEANT4 simulation used.

Several classical ML and DL models are probed: Boosted Decision Trees, Feed-Forward Networks, Convolutional NNs. Without pile-up
position, energy and time are estimated consistently with LHCb ECAL design. At increased pile-up ML reconstruction still shows
meaningful estimation while parametric reconstruction require fine-tuning.

Dependence of the reconstructed coordinate on the true
coordinate under pail-up conditions. The color from vi-
olet (dark) to yellow (bright) represents the normalised
counts of the events from 0.0 to 1.0, respectively.

Energy resolution as a function of photon energy for the ECAL inner modules
(nPV = 10). The fit (red line) corresponds to the ML reco data (black circles).
Energy is measured in GeV. Standalone GEANT4 simulation.

Creation of geometry agnostic inputs for large models
Another area of application of deep learning is to compensate for the irregular arrangement of detector sensitive elements. Examples of
such irregularities include:

• Boundaries between regions with different granularity. Interpolation of the cells for equalization of granularity on both sides of the
border can be applied.

• Rows or columns of sensitive elements skipped for engineering reasons. Interpolation of non-existing energy deposits in missing
‘virtual’ cells can be used here.

• Edges of the calorimeter. As in the preceding, classical or ML interpolation can recover events at the edges.

The creation of geometry agnostic inputs in reconstruction algorithms allows us to greatly simplify the architecture of the models. This
can be done with small additional models that preprocess the data upstream of the larger reconstruction models.

We have compared several interpolation methods and fully connected neural networks to recover missing row or column inside the matrix
of cells. The averaged metrics by the position of the missing row (column) of cells are presented in the table. The best model turned out
to be fully-connected neural network with two linear layers and ReLU activation (FC-2).

An example of calorimetric cluster with missing row of
cells (left) and recovered cluster (right).

Model Energy RMSE↓ PSNR↑ SSIM↑

Interpolation
Nearest-neighbor 223545 85.3 0.74
Cubic 208187 91.2 0.75
Linear 159946 92.8 0.79

Deep Learning FC-1 58343 82.8 0.78
FC-2 28928 96.9 0.94

A comparison of classical interpolation methods and DL interpolation for recovering
of the calorimetric cluster with missing information. The metrics are averaged over
the position and type of the irregularity.

A comparison of methods of interpolation of the missing information in clusters depending on the position of irregularity and cluster energy.


