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 Use of  Deep Learning Generative Models for production of Simulated Data 
in ATLAS 

To simulate proton-proton LHC collisions: 
In the standard way implies (1) generation , (2) 

hadronization/fragmentation (3) to pass the 
particles through the detectors (detector 

simulation) 

To produce billions of events -> Time consuming and 
expensive 

On top of that, when systematic errors have to be 
evaluated, more MC production is needed 

 
We can try to use another methodology: 

To generate SM background events and new physics 
scenario and to process the data in a easy-

format ( sequence of 4 –vectors) 

Run ML Methods: VAE’s, FAN’s and NF  
With computational time savings  

To define a metrics to compare the performance 

To define a Good estimation of systematic errors 

 
 

 

Datasets used in this work have been taken from a uptodate 
repository; the ones generated by DarkMachines community. 
LHCsimulationProject, Feb 2020, doi:10.5281/zenodo.
3685861. Available at: https://zenodo.org/record/3685861.  

                     
 
Reason to study these datasets: 
- more processes in the repository which can be studied subsequently 
- extended information per event (leptons, photons,…) 
- well documented and access to the authors 
 
CSV file one line per event 
 
List of variables: event id, process ID, event weight , MET, 

METphi, obje1, E1, pt1, eta1, phi1, obj2, E2, pt2, eta2, 
phi2, … 

Process ID: ttbar / New Physics: stop_2 
objects: b-jets, leptons, jets, photons,; in each type they are 

ordered in descending order according its p_t the latent 
space is composed by a vector containing the mean and the 
standard deviation  corresponding to the different distributions 
of the features /variables of each event 

 
 

 Use of different ML methods  in the classification of signal/background for 
searches for ttbar resonances 

Physics Problem: classification 
into ttbar resonances  

- BDT’s : better results with 3 levels of depth and 
it’s optimized with 300 iterations 

- BDT gives better results than RF at low masses 
but RF is a little bit better at high masses. 
Improvement of RF results with to 5 variables 
and 500 DT estimators  

- NNS vs BDT&RF: NN simple gives worst results 
at low mass wrt BDT&RF but they give better 
results at high mass 

-  Paremeterized NN don’t get a significant 
improvement with respect NNsimple/
complex: they interpolate well except for low 
masses 

 

Histograms of first jet parameter E and Φ   with   β =0.001  

AUTOENCODERS: An architecture of artificial neural 
networks composed of two parts: encoder and 
decoder, which is trained as a whole in order to 

reproduce the input at the output while learning an 
intermediate coded representation. And then generate 

the input data as close as possible to the input from 
the learned coded representation. 

Continuation of the studies with Generative Models in the 
context of IFIC-UPV collaboration: 

 
- Improvements  in the quality of the simulated events 

generated using VAE 
- Further cross-checks to validate the samples 
- To study the performance using Normalizing Flows (NF) and 

comparison VAE-NF 
To apply these GGMM to another physics processes 

 
Possible limits in the use of these additional simulated data 
         -  At the statistical level  
         -  In the phase of evaluation of systematic errors  

 Histograms of fist jet of particles comparing the best model of  β -VAE and α-VAE with 
stop_02 events (   β  =0.001 and  α  =0.2 )  
 

SM Process 
-Background 

BSM Process 
Signal 

Input data is Simulated Data by: 
•    Generation by using Pythia & MADGRAPH    

–  Background events datasets (SM events) 
–  Different resonance masses: 

•    500GeV  1250GeV 750GeV 1500GeV 1000 GeV 

       

· 10,000,000 events  
-  No normalized and Normalized datsets 

- Variables/features: 
•        · 5 high-level features 
•        · 21 low-level features 

Correaltion between 11 variables, the 
Ones with better discrimitantion power 

•  Parameterized NN:  

•  One of the possible solutions to this problem 
would be the use of parameterized models, 
which are based on including mass as one 
additional feature. In a real case, the idea 
would be to train the model with masses 
from the simulations. When making 
predictions on real data, a mass parameter 
would be added to them. Several tests could 
be done with masses suspected to be the 
mass of particle X, and they do not have to 
be the masses used for training. These 
possible masses could be to estimate for 
example from visualizations of the final 
invariant mass.                

 
 

 
 

�  Boosted Decision Trees  allow the use of trees with little 
classifying power, such as trees with little complexity or 
composed of a single node (stumps) as good classifiers. 

 
�   Adaptive Boosting (AdaBoost) algorithm has beeen 

used. 
 
�  The training data set is assigned a weight uniformly to 

each event. Depending on whether the simple tree has 
been able to correctly classify an event or not, a new 
weight is reassigned. 

 
�  A different data set is made with the new weights, which 

is used to fit the next tree and so recursively 
 

�   Random Forest can be used for classification 
problems, as in our case, or for regression. 

�  They are fast to train and make predictions, are 
easy to fit and easily estimate a general error of 
the model (Out-of-the-Bag Data) 

 
�  Starting from multiple random subdivisions of the 

dataset train, DTs are generated whose nodes 
collect a combination of variables that are 
different from each other due to the randomness 
of the data chosen to create them. The result of 
these trees are combined homogeneously, 
without taking into account any type of weight 
between the trees. 

 
 

Decision Trees:BDT 
 

Decision Tree Random Forest 

Comparison between different ML methods 

Precision 
Sensistivity 
F1-score 

F1-score, Precision and Sensitivity of Simple NN 
for the 5 values of the signal masses 

Comparison Rstudio - Python 

Simple Neural Network 

Hyperparameter optimization:  
 
  - number of variables/features: 16, 11, 5   
  -  number of DT estimators: 500  
 

Accuracy vs number of iterations for 3 different depths  
(with resonance mass = 1500 GeV) 

Several  ‘experiments’ have been 
performed 

Application to a data sample of SM ttbar events 
for variables: 
MET  (missing E_t) and η (psudorapidy) Another approach: β -VAE: 

Results with α -VAE and comparison with β -VAE Next steps: 

Part 1 Part 2 
1.-A  complete study with different ML methods applied to simulated datasets  ; Decision Trees: 
BDT and Random Forest ; Neural Networks: Simple , Complex and Parameterized NN 

2.- NN give better classification performance than Decision Trees,l except in the case of low 
masses of ttbar resonances 
3.- Rstudio and Python comparison: Python  is faster but RStudio provides a more didactic 
framework 
4.- Out Of Bag error estimate:  using RF one can have access to the error estimates of the 
accuracies  

1.- Study of different VAE for creating large amounts of analysis-specific simulated LHC events with 
limited computing cost  
2.- Method  β-VAE yields initially promising results 
3.- Method α-VAE: : by adding a variator one can obtain  a better agreement between the original 
dataset and the Generative Models simulated dataset 
4. Further studies will be focused in the control of the metrics and the study of other Generative Models  

-  The same task is 7-8 times faster in python  
than in Rstudio 
- Comparing RF with 500 trees with  BDT ADA 
300 iterations : about 2 times faster RF 500  
Trees 
-  RStudio is more user friendly than python  
and is used for first steps in ML 

Scheme of the internal structure of a Variational Autoencoder 

Our use case is the application of these methods to the search 
for a new particle X, of unknown mass, which is a resonance 
decaying into a top-antitop pair. The decay scheme of the top-
antitop pair is the same for SM processes as for the resonance 
case. It is the kinematic variables and the invariant masses that 
can be calculated from them that have different types of 
distributions. 

Structure  of a Parameterized Neural Network 

Output 

Activation 
Function 

Sinaptic  
weights 

Input  
Signals 

Adding  

Union 

Scheme of a Complex NN with two hidden layers 

Complex Neural Network 

Flow diagram for generating events with   β- VAE approach 

Available at: http://archive.ics.uci.edu/ml/datasets/
HEPMASS 


