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Use of different ML methods in the classification of signal/background for 10,000,000 events i MACHINE LEARNING METHODS

- No normalized and Normalized datsets

searches for ttbar resonances - Variables/features: AMEE™® % Simple Neural Network

. - 5 high-level features

FEATURE | TIPO DESCRIPCION PARTICULA

n n gem n label | inari | Variable output sl vs ruido . - 21 low-level features
P h ys I CS P rO b I e m : C I ass Ifl Catl O n lep_pt | float  Momento transversal del eptdn Available at: http://archive.ics.uci.edu/ml/datasets/
lep_eta | float | Pseudorapidity Leptdn HEPMASS

L lep_phi | float | Azimut
I nto ttbar resonances met_miss | float | Momento transversal faltante Netrio o
met_phi | float | Asimut faltante 3 005 [CEN
jets_mo | entero | Nimero de jets de la colision Jets resultantes
b jett_pt | float | Momento transversal
jett_eta | float | Pseudorapidity
¢ jet_phi | float | Azimut
jet1_btag | binaria | Correspondencia con un quark b
v jetd_pt | float | Momento transversal
jetd_eta | float | Pseudorapidity
/ jetd_phi | float | Azimut
jetd_btag | binaria | Correspondencia con un quark b
b jetd_pt | float | Momento transversal
jetd_eta | float | Pseudorapidity
jetd_phi | float | Azimut

— Precision
Sensistivity
— F1-score

Jet més energético

Our use case is the application of these methods to the search g "
for a new particle X, of unknown mass, which is a resonance 356
decaying into a top-antitop pair. The decay scheme of the top-

antitop pair is the same for SM processes as for the resonance q
case. It is the kinematic variables and the invariant masses that g /64 |
can be calculated from them that have different types of

distributions.
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Segundo jet mas energético

Input | T —
Signals

Output

Tercer jet mds energético o o )
F1-score, Precision and Sensitivity of Simple NN

SM Process BSM Process i | Uy G for the 5 values of the signal masses
Back d Signal jety_pt | float | Momento transversal
] -backgroun jetd_eta | float | Pseudorapidity R T——
Event quark anti-quark jet_phi | st A Complex Neural Network
Jet o jet_btag | binaria | Correspondencia con un quark b
_— . . . m_jj float | Masa invariante W
a® //W/. Input data is Simulated Data by: i Vi e f
top quark 1 1 1 invari i
g7 «  Generation by using Pythia & MADGRAPH LS v -
® Q@ @ B> OO O O m_jlv | float | Mosa invariante t Sinaptic
‘"/‘s; — Background events datasets (SM events) m_wubb | foat | Vosa imariate X weights
wark W poson O audi . Masa de La particula X en
e |\ mw @ — Different resonance masses: mass | fou Si;fjacféf(%asi'glido;“ X
aanc ) T et 500GeV 1250GeV 750GeV 1500GeV 1000 GeV
, Wi A mekes
et Correaltion between 11 variables, the

Ones with better discrimitantion power
Scheme of a Complex NN with two hidden layers

Parameterized NN. Decision Trees:BDT

would bé the use of parameterized modele, : : : Random Forest Simplified Comparison between different ML methods
would be the use of parameterized models, | | | | "
nstance

Whl(.:h are based on including mass a.s one ¥ ; ) I ) , ' Random Forest /( ~ Better RF Better BDT Better NN
additional feature. In a real case, the idea ) ame e |

Accuracy | Kappa Accuracy | Kappa Accuracy | Kappa

\\
would be to train the model with masses | e ‘\/ . ~a g
from the simulations. When making ok ek B T N - 5 0.787 | 0.574 0.819 0.638 0.663 0.326
predictions on real data, a mass parameter N VA \ / \

would be added to them. Several tests could Tree-1 Tree-2 Tree-n 0.851 0.700 0.852 0.704 0.850 0.699
be done with masses suspected to be the

mass of particle X, and they do not have to :
be the masses used for training. These o | Majoriy-Voting
possible masses could be to estimate for Decision Tree Random Forest ikl 0.946 0.892 0.944 0.888 0.958 0.916

examp|e from visualizations of the final ?] Boosted Decision Trees allow the use of trees with little
classifying power, such as trees with little complexity or

invariant mass. composed of a single node (stumps) as good classifiers.

Accuracy vs number of iterations for 3 different depths
(with resonance mass = 1500 GeV) Class-A Class-B Class-B

| 0.925 0.849 0.922 0.844 0.941 0.882

0.895 0.790 0.889 0.779 0.914 0.829

(2] Random Forgst can be used for classif_ication Hyperparameter optimization:
problems, as in our case, or for regression.

oy 2] Adaptive Boosting (AdaBoost) algorithm has beeen [2] They are fast to train and make predictions, are . _ - BDT’s : better results with 3 levels of depth and Comparison Rstudio - Python
used. easy to fit and easily estimate a general error of - number of Var'able_S/featureS' 16, 11,5 it's optimized with 300 iterations
The training data set is assigned a weight uniformly to the model (Out-of-the-Bag Data) - number of DT estimators: 500 - BDT giVGS. bett_er reS_UItS than RF at low masses
each event. Depending on whether the simple tree has Starti . o but RF is a little bit better at high masses. - The same task is 7-8 times faster in python
' tarting from multiple random subdivisions of the . . . .
been able to correctly classify an event or not, a new dataset train, DTs are generated whose nodes Improvement of_ RF results with to 5 variables than in Rgtudlo . |
weight is reassigned. collect a combination of variables that are and 500 DT estimators - Comparing RF with 500 trees with BDT ADA
different from each other due to the randomness - NNS vs BDT&RF: NN simple gives worst results 300 iterations : about 2 times faster RF 500

of the data chosen to create them. The result of at |OW mass wrt BDT&RF bUt they give better Trees

is used to fit the next tree and so recursively these trees are combined homo ) . .
geneously, - RStudio is more user friendly than python
without taking into account any type of weight results at hlgh mass Y Py

Structure of a Parameterized Neural Network between the trees. - Paremeterized NN don’t get a significant and is used for first steps in ML
improvement with respect NNsimple/
complex: they interpolate well except for low
masses

A different data set is made with the new weights, which

Use of Deep Learning Generative Models for production of Simulated Data

in ATLAS
Datasets used in this work have been taken from a uptodate AUTOENCODERS: An architecture of artificial neural

i _ i : repository; the ones generated by DarkMachines community. networks composed of two parts: encoder and
To simulate prOtOl:'] prc,)ton LHC COIIIS,IonS' LHCsimulationProject, Feb 2020, doi:10.5281/zenodo. decoder. which is trained as a whole in order to
In the standard way implies (1) generation , (2) 3685861. Available at: https://zenodo.org/record/3685861. o . .
reproduce the input at the output while learning an o
training

hadronization/fragmentation (3) to pass the intermediate coded representation. And then generate oroces e
particles through the detectors (detector Reason to study these datasets: the input data as close as possible to the input from

: : - more processes in the repository which can be studied subsequently _ oded vector
S|mU|at|0n) - extended information per event (leptons, photons,...) the learned coded representation. i

To produce billions of events -> Time consuming and - Well documented and access to the authors

expensive CSV file one line per event ]
On top of that, when systematic errors have to be H |

: : List of variables: event id, process ID, event weight , MET, : eneration
evaluated, more MC production is needed METphi, obje1, E1, pt1, etal. phi1, obj2, E2. pt2, eta2, Loss Function 9

ohi2, ...

We can try to use another methodology: (F)’g?ggz_s é?éf;b?é é t’(\)'r?;v jzg’sri)%sc;tgfsp__% each type they are Lvap = (1 - f)MSE + KL o
To generate SM background events and new physics ordered in descending order according its p_t the latent ~

scenario and to process the data in a easy- space is composed by a vector containing the mean and the MSE: Mean Squared Error. Scheme of the internal structure of a Variational Autoencoder

standard deviation corresponding to the different distributions Reconstruction term on the i
format ( sequence of 4 —vectors) of the features /variables oﬁ‘ eachgevent e Kullbae

Run ML Methods: VAE’s, FAN'’s and NF Leibler (kL) divergence and tends to
With computational time savings e by making e distritions.
To define a metrics to compare the performance el
To define a Good estimation of systematic errors 1

To avoid Overfitting ‘

sampler decoded content

process

(reconstructed input /
generated content)

Several ‘experiments’ have been . : :
performed Results with a -VAE and comparison with 8 -VAE Next steps:

1 general particles
—— Simulated —— Simulated
Original Original

L

Continuation of the studies with Generative Models in the
context of IFIC-UPV collaboration:

- Improvements in the quality of the simulated events
generated using VAE
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% s 2 i %5 s 60 e - To study the performance using Normalizing Flows (NF) and

. S . | | mparison VAE-NF
Application to a data sample of SM ttbar events Histograms of first jet parameter E and ® with B =0.001 compariso _
for variables: e R S To apply these GGMM to another physics processes

MET (missing E_t) and n (psudorapidy) Another approach: B -VAE:

o - Possible limits in the use of these additional simulated data
e . - At the statistical level
: - In the phase of evaluation of systematic errors
ey W i '

Flow diagram for generating events with B- VAE approach Histograms of fist jet of particles comparing the best model of B -VAE and a-VAE with
stop 02 events ( B =0.001 and a =0.2)

Part 1 Conclusions: Part 2

1.-A complete study with different ML methods applied to simulated datasets ; Decision Trees:
BDT and Random Forest ; Neural Networks: Simple , Complex and Parameterized NN

2.- NN give better classification performance than Decision Trees,| except in the case of low
masses of ttbar resonances

1.- Study of different VAE for creating large amounts of analysis-specific simulated LHC events with
limited computing cost
2.- Method B-VAE yields initially promising results

3.- Rstudio and Python comparison: Python is faster but RStudio provides a more didactic 3.- Method a-VAE: : by adding a variator one can obtain a better agreement between the original
framework dataset and the Generative Models simulated dataset

4.- Out Of Bag error estimate: using RF one can have access to the error estimates of the 4. Further studies will be focused in the control of the metrics and the study of other Generative Models
accuracies
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