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INTRODUCTION

Algorithm at BESII|

Yuncong Zhai, Teng Li, Xingtao Huang

> Particle identification (PID) is one of the most important and commonly used tools for the

physics analysis in collider physics experiments.

Shandong University, Qingdao, China

> For BESIII experiment, traditional methods like the maximum likelihood method are

difficult to improve due to the intrinsic correlations between input variables.

—  Especially for very challenging problem: muon/pion separation

Great room for
improvement at

> In recent decades, Machine learning (ML) has provided a powerful toolbox. ¢ Catileiic
— ML based techniques have been rapidly developed and have shown

successful applications in HEP experimentsl!2]

— One of the obvious advantages of applying ML to PID is its capability of 3 4

combing many correlated variables to solve the most difficult problems for

traditional methods(3-2]

— Preliminary results show that the gradient boosting decision tree (BDT) 671

model provides obviously higher discrimination power than traditional ones

O The muon discrimination efficiency
and cos © by traditional PID software.
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> Targeting at the muon/pion identification problem at the BESIII experiment, we have

developed a new PID algorithm based on the BDT algorithm.

—  Further improving the performance of traditional PID algorithms and exploring its physical

potential

METHODOLOGY

In order to fully explore the PID performance of the detector. Using advanced BDT
(XGBoostl®l) , develop a novel muon/pion PID algorithm.
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Configuration

> Based on a data-driven approach, BDT

is used as a key technical approach.

» Selected hyper-parameters:

— max_depth: 8

— n_estimators: 300

Sample Feature Model
Production Engineering Development Validation

» Systematic error:

AE =

_&(Data) — ¢(MC)

g(MC)

(e: PID efficiency)

» Through detailed cross-validation to
evaluate deviations :

— Different decay processes

— MC/data

Result

PERFORMANCE

Application

Comparison with traditional PID algorithm

Signal efficiency

+ XGbhoost + Traditional

Background efficiency

. XGboost . Traditional

model PID algorithm model PID algorithm
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Cross validation between different decay processes

— To check generalization ability

— To estimate the deviations different decay channels

i particle selection efficiency on different MC test sets by XGBoost model
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Cross validation between MC and Data
— To estimate systematical error
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BESIII EXPERIMENT

> The Beijing Spectrometer IIT (BESIII) is a collider physics experiment running on the
Beijing Electron-Positron Collider II (BEPCIT) (8]

The BEPCIT description The BESIIT detector

« Center-of-mass energy: 2.0 to 4.95 GeV Helium-based multilayer drift chamber (MDC)

« Peak luminosity: 1 x 1033cm2s (/s = 3.77 GeV) Plastic scintillator time-of-flight system (TOF)

CsI(TIl) electromagnetic calorimeter (EMC)

Electro Magnetic Muon Counter(l\/l UC)

Calorimeter

Momentum resolution: 0.5% at 1 GeV/c
SC | . TTTTTT7TTT. 777 dE/dx resolution: 6%

I ' . .
Solenoid Energy resolution: 2.5% (5%) at 1 GeV in

Barrel
ToF

Endcap ' Time resolution : 68 ps (barrel), 60 ps (end

Togc cap)
Quadrupole

the barrel (end cap)
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DATA SAMPLE

Based on the substantial amount of high-quality Monte Carlo simulation (MC)/real data
samples from BESIII, relying on its mature offline software system (BOSS).

Train sample Cross-validation sample

> Single muon/pion MC samples .

@ The purity (P) of the u/m samples Nsample ture
. . . . . - = The puri of the amples :
» High purity and well distribution (Pre- N\ Y Nsample

processing)
— Make sure the distribution of p and cos 0 is > MC/data:

flattened to avoid bias - J/y—-ntn n® > ntnyy (P=99.37%)
— 0.16eV/c<p<156eV/c,~0.88 < cos0<0.88 - J/y—=vpup (P=97.97%)

(bin numbers :16™20) > Different decay processes:

- y@s)— ntnJ/y >t ptp(P=99.13%
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FEATURE SELECTION

> To extract effective features from a  » Eliminate redundant and strongly-

large amount of interrelated sub- correlated features, 37 features are

detectors information.

Feature importance

nhits_emc

> First model trained with all 108 features. &

deltaPhi rpc
chipi_tof pid -
chimu_tof pid -
mdc +

— Contain MDC, dE/dX, TOF, EMC, MUC st
chipi_dedx

information i
probPH:;cj%fai ‘
nhits rpc:

— Based on XGBoost

Features

distance rﬁc 4 7.243380505458681
eseed emc 6.963582289794614

> Features are then selected according to  “uu=:

pX_rpc 4= 5268232814821108
Secondm emc 1 5.164474531756276
theta_emc 1
i Z_IPC == 4.746996685023865
feature importance %
) 7 eMC 4= 4:51570256659608
Y_rpc +— 4376850139302093
latm_emc =479 734
theta mdc +— 3949276397401339
phi_mdc = 37093041247743552
charge = 3544593255955071

o

CONCLUSION

v A muon/pion identification algorithm based on machine learning model (XGBoost) is
developed based on the high quality data samples and has been integrated into the BOSS.

v Performance analysis shows XGBoost model provides obviously higher discrimination power

than traditional methods.

v’ Detailed cross-validation was conducted and an evaluation method for the systematic
error of the machine learning model was provided, which can be used by BESIII physics

analysts.
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