Muon／Pion Identification Based on Machine Learning

 Algorithm at BESIIIYuncong Zhai，Teng Li，Xingtao Huang
前沿交叉科学青岛研宪院 Shandong University，Qingdao，China

INTRODUCTION

Particle identification（PID）is one of the most important and commonly used tools for the physics analysis in collider physics experiments．
For BESIII experiment，traditional methods like the maximum likelihood method are difficult to improve due to the intrinsic correlations between input variables

Especially for very challenging problem：muon／pion separation
In recent decades，Machine learning（ML）has provided a powerful toolbox ML based techniques have been rapidly developed and have shown
successful applications in HEP experiments ${ }^{[1,2]}$
The muon discrimination efficiency（⿺）
and $\cos \theta$ by traditional PfD softwe One of the obvious advantages of applying ML to PID is its capability of $\frac{3}{3}$ combing many correlated variables to solve the most difficult problems for traditional methods ${ }^{[3-5]}$
Preliminary results show that the gradient boosting decision tree（BDT）${ }^{[6,7]}$ model provides obviously higher discrimination power than traditional ones

Targeting at the muon／pion identification problem at the BESIII experiment，we have developed a new PID algorithm based on the BDT algorithm．

Further improving the performance of traditional PID algorithms and exploring its physical potential

METHODOLOGY

In order to fully explore the PID performance of the detector．Using advanced BDT （XGBoost ${ }^{[9]}$ ），develop a novel muon／pion PID algorithm．
n1 Configuration
－Based on a data－driven approach，BDT
is used as a key technical approach．
Selected hyper－parameters：
max＿depth： 8
n＿estimators： 300

02．Systematic errors
＞Systematic error：
$\Delta \varepsilon=\frac{\varepsilon(\text { Data })-\varepsilon(M C)}{\varepsilon(M C)}$（ ε ：PID efficiency）
－Through detailed cross－validation to evaluate deviations ：

Different decay processes
MC／data

边： $>$ Signal eff ficiency：
$\frac{\text { The number of signal selected correctly }}{\text { The oftal number of signal }}$ $>$ Background efficiency：

Cross validation between different decay processes
To check generalization ability
－To estimate the deviations different decay channels

Cross validation between MC and Data

BESIII EXPERIMENT

The Beijing Spectrometer III（BESIII）is a collider physics experiment running on the Beijing Electron－Positron Collider II（BEPCII）${ }^{[8]}$ ．

The BEPCII description
Center－of－mass energy： 2.0 to 4.95 GeV －Peak luminosity： $1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(\sqrt{5}=3.77 \mathrm{GeV})$

DATA SAMPLE

Based on the substantial amount of high－quality Monte Carlo simulation（MC）／real data samples from BESIII，relying on its mature offline software system（BOSS）

Train sample
Cross－validation sample
Single muon／pion MC samples
＞High purity and well distribution（Pre－ processing）
Make sure the distribution of p and $\cos \theta$ is
flattened to avoid bias
$0.1 \mathrm{GeV} / \mathrm{c}<\mathrm{p}<1.5 \mathrm{GeV} / \mathrm{c},-0.88<\cos \boldsymbol{\theta}<0.88$

（D）The purity（ P ）of the μ / π samples ：$\frac{N_{\text {sample }} \text { ture }}{N_{\text {sample }}}$
MC／data：
$\mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \pi^{0} \rightarrow \pi^{+} \pi^{-} \mathrm{Yy}(P=99.37 \%)$
$\mathrm{J} / \Psi \rightarrow \mathrm{Y} \mu^{+} \mu^{-}(\mathrm{P}=97.97 \%)$
Different decay processes：
$\psi(2 \mathrm{~s}) \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \mu^{+} \mu^{-}(\mathrm{P}=99.13 \%$

