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Conclusion and Outlook

GNN (basf2 Offline) achieves
96.8% (65.6%) track finding
efficiency on displaced vertex
test samples at the cost of

Develop New Tracking Algorithm that can:

Fit with computing resource and time constraint
→ Graph Neural Networks

Find unkown number of tracks
→ Object Condensation [1]

Decay products of long-lived particles are an important
signature in dark sector searches in collider experiments.
→ current Belle II tracking algorithm is optimized for
tracks originating from the interaction point

Belle II simulated training samples
generated with basf2 [2], uniform mix of
displaced vertex, 1-5 tracks from the
interaction point, and 1-5 displaced tracks

Input features are wire information: position of
a hit wire, signal height, and signal time

Predict number of tracks and the respective
track parameters: momentum and track
starting position

Training Samples and Track ParametersModel Overview
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[1] Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data. Kiesler, J. In Eur.Phys.J.C, vol. 80 no. 9 (2020).
[2] The Belle II Core Software. Kuhr, T., Pulvermacher, C., Ritter, M., Hauth, T. and Braun, N. In Computing and Software for Big Science, vol. 3 no. 1 (2019), https://github.com/belle2/basf2
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GNN track finding efficiency
constant and independent up
to 80cm radial displacement

Implemented Object Condensation for Drift Chamber Track Finding
→ Full Track Finding and Fitting GNN model working!

Next Steps

Object Condensation good at generalizing (can be applied to high
occupancy background and higher multiplicity track events)
New tracking methods can tackle also high occupancy due to increased
backgrounds expected in the upcoming data taking of Belle II
→ GNN based track finding approach shows promising results with high
occupancy
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high track multiplicity high occupancy background

Implementation of GNN Track Finding in basf2 tracking software
Investigation for real-time application in the level 1 trigger system

χ→ µ+ µ−

mX = [1,2,3] GeV
0.9GeV < pX < 6GeV
0cm < vX ,r < 100cm
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χ→ µ+ µ−

mX = [1,2,3] GeV
0.9GeV < pX < 6GeV
0cm < vX ,r < 100cm
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fake rate of 2.3% (8.6%)
clone rate of 0.7% (0.4%)

Watch how our
network learns
to find tracks!


