

Karlsruhe Institute of Technology

Graph Neural Network based Track Finding in the Central Drift Chamber at Belle II

Lea Reuter*, Philipp Dorwarth, Torben Ferber, Slavomira Stefkova Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT)

Motivation

Model Overview

Training Samples and Track Parameters

Decay products of long-lived particles are an important signature in dark sector searches in collider experiments. \rightarrow current Belle II tracking algorithm is optimized for tracks originating from the interaction point

simulated training samples Belle II generated with basf2 [2], uniform mix of displaced vertex, 1-5 tracks from the interaction point, and 1-5 displaced tracks

- Input features are wire information: position of a hit wire, signal height, and signal time
- Predict number of tracks and the respective track parameters: momentum and track starting position

Model Track Parameter Prediction Resolution

.028) **Training Parameters** Training Parameters: Ö **Belle II** Simulation (own work) Input Features: Simulation (own work Input Features: ∽ 6000 0 displaced vertex test samples x, y, tdc, adc, sl, l x, y, tdc, adc, sl, l displaced vertex test samples $\chi \rightarrow \mu^+ \mu^ \chi \rightarrow \mu^+ \mu^-$ Training Target: Training Target: <u></u> 5000 $n_{\text{tracks}}, p_x, p_y, p_z, v_x, v_y, v_z$ $n_{\text{tracks}}, p_x, p_y, p_z, v_x, v_y, v_z$ $m_{\rm X} = [1, 2, 3] \, {\rm GeV}$ 8.0 <u>T</u> $m_{\rm X} = [1, 2, 3] \, {\rm GeV}$ $0.9 \,\mathrm{GeV} < p_X < 6 \,\mathrm{GeV}$ $0.9 \,\mathrm{GeV} < p_X < 6 \,\mathrm{GeV}$ $0 \, \text{cm} < v_X \, r < 100 \, \text{cm}$ $0 \,\mathrm{cm} < v_X < 100 \,\mathrm{cm}$ 4000 0.6 3000 0.4 2000 0.2 1000 -0.4-0.2 0.0 0.2 0.6 -20 -10 -0.6 0.4 10 15 -15 -5 relative momentum resolution $(p_{pred} - p_{truth}) / p_{truth}$ track starting position resolution $V_{r, \text{pred}} - V_{r, \text{truth}}$ (cm)

Conclusion and Outlook

- Implemented Object Condensation for Drift Chamber Track Finding
 - → Full Track Finding and Fitting GNN model working!
- Object Condensation good at generalizing (can be applied to high

occupancy background and higher multiplicity track events)

- **New** tracking methods can tackle also high occupancy due to increased backgrounds expected in the upcoming data taking of Belle II
 - \rightarrow GNN based track finding approach shows promising results with high occupancy

Next Steps

- Implementation of GNN Track Finding in basf2 tracking software
- Investigation for real-time application in the level 1 trigger system

[1] Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph and image data. Kiesler, J. In Eur. Phys. J.C, vol. 80 no. 9 (2020). [2] The Belle II Core Software. Kuhr, T., Pulvermacher, C., Ritter, M., Hauth, T. and Braun, N. In Computing and Software for Big Science, vol. 3 no. 1 (2019), https://github.com/belle2/basf2

* lea.reuter@kit.edu

26th International Conference on Computing in High Energy & Nuclear Physics, 2023

KIT – The Research University in the Helmholtz Association

