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FAIR4HEP MISSION
▸ DOE ASCR-funded collaboration (3-year project: 2020–2023) 

▸ To advance our understanding of the relationship between our data and AI models by 
empowering scientists to explore both through the development of frameworks 
adhering to the principles of findability, accessibility, interoperability, and reusability 
(FAIR) 

▸ Using HEP as the science use-case 

▸ Investigate FAIR ways to share AI models and data 

▸ Create an environment where novel approaches to AI can be explored and applied 
to new data 

▸ Enable new insights for applying AI techniques 

▸ Collaborate with partners: CERN Open Data Portal, Zenodo, DLHub  

▸ Operate within larger community: Australian Research Data Commons (ARDC), Research 
Data Alliance (RDA)
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http://opendata.cern.ch/
https://zenodo.org/
http://dlhub.org
https://ardc.edu.au/collaborations/fair-principles/
https://www.rd-alliance.org/
https://www.rd-alliance.org/
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▸ Motivation 

▸ FAIR Principles and Datasets in HEP 

▸ FAIR AI models in HEP 

▸ Cookiecutter4FAIR 

▸ Projects implementing FAIR princples 

▸ Vision & Outlook

OUTLINE
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MOTIVATION 1: CREATING/SHARING REFERENCE DATA SETS FOR HEP
▸ Engage ML community for interesting, realistic tasks in experimental HEP 

▸ As ImageNet (an image dataset organized according to the WorldNet hierarchy) 
accelerated advances in computer vision, do the same for HEP
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http://www.image-net.org/
https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit?usp=sharing
https://www.kaggle.com/c/trackml-particle-identification/overview
http://doi.org/10.7483/OPENDATA.CMS.JGJX.MS7Q
https://zenodo.org/record/4559324#.YH-Nqu9KiqA


MOTIVATION 1: CREATING/SHARING REFERENCE DATA SETS FOR HEP

QCD top

▸ Engage ML community for interesting, realistic tasks in experimental HEP 

▸ As ImageNet (an image dataset organized according to the WorldNet hierarchy) 
accelerated advances in computer vision, do the same for HEP

▸ Calls at many workshops for more public HEP data sets with real detector simulation for 
ML applications 

▸ Example: dataset for top tagging based on  
Pythia+Delphes 

▸ Example: dataset for tracking based on ACTS  
(kaggle TrackML challenge) 

▸ Example: dataset for H(bb) tagging based on  
CMS open simulation 

▸ Example: dataset for particle-flow based on Pythia+Delphes
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▸ Allow AI models developed for one experiment to be (re-)trained and (re-)used 
easily in another experiment 

▸ Example 1: ATLAS studied GravNet developed by CMS collaborators 
[https://cds.cern.ch/record/2753414] for physics object  
localization using point cloud segmentation 

▸ Example 2: CMS collaborators are using SPANet 
 developed by ATLAS collaborators 

MOTIVATION 2: SHARING/REUSING AI MODELS ACROSS HEP

top
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(a) PointNet++ (b) DGCNN (c) GravNet

(d) GarNet (e) GravNet+ReLU + GFV (f) GarNet+ReLU-Bipartite+GFV

Figure 9: The T-SNE algorithm translates the multidimensional feature vector (the input to the last network layer) to
an arbitrary two dimensional space. The feature vector is the last input used by the networks (a) PointNet++, (b)
DGCNN, (c) GravNet, (d) GarNet, (e) GravNet+ReLU, and (f) GarNet+GFV to classify a single detector input as
belonging to jet (black), electron (yellow), or background (blue). The distance between points is proportional of the
distance in the higher dimensional space in order to give a visible representation of separation strength between
classes. Good performance of the network is reflected by clear delineation of class points. The x- and y-axes are
arbitrary units with no translatable label.

mIoU Jet IoU Electron IoU Background IoU
GravNet 0.60 ± 0.02 0.74 ± 0.01 0.32 ± 0.02 0.75 ± 0.02
+ ReLU 0.84 ± 0.02 0.86 ± 0.03 0.74 ± 0.02 0.933 ± 0.003
+ GFV 0.866 ± 0.002 0.878 ± 0.006 0.782 ± 0.004 0.938 ± 0.001

GarNet 0.43 ± 0.02 0.45 ± 0.04 0.13 ± 0.02 0.70 ± 0.02
+ ReLU 0.46 ± 0.1 0.47 ± 0.05 0.19 ± 0.02 0.72 ± 0.02
- Bipartite 0.575 ± 0.001 0.654 ± 0.003 0.305 ± 0.001 0.765 ± 0.002
+ GFV 0.577 ± 0.004 0.670 ± 0.006 0.305 ± 0.004 0.756 ± 0.004

Table 2: The Intersection over Union (IoU), a standard metric for semantic segmentation learning tasks, calculated
for each object class separately (jet, electron, and background) and the mean IoU (mIoU) of all classes. Each row
contains the metrics for the original and improved GarNet and GravNet models (see text for details). Training was
run for 10 epochs in each case. This table shows the mean and standard deviation of each IoU over 3 identical runs.

shows the results of this addition (labeled ‘+GFV’). GravNet mIoU performance improves by 2.6%, while
GarNet sees another 0.35% increase in mIoU performance, or 44% overall, over the original version. Figure
9 shows the T-SNE class distribution for the best performing modified GravNet and GarNet models.

T-SNE and mIoU metrics are useful tools for generally characterizing segmentation networks. However,
it must be determined whether the network is finding all of the unique objects in the data. This is not
immediately evident from the predictions, which are per-point instead of per-object. The ground truth in
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▸ Easier to build upon existing work (e.g. through transfer learning) 
 
 
 

MOTIVATION 3: EXPLORING RELATIONSHIPS BETWEEN DATA AND AI MODELS 6

Figure 3: Left: early stage of fine-tuning of an Xception model, pre-trained on ImageNet, to perform
image classification of galaxies observed by the Dark Energy Survey. The activation vector of each
image is embedded in a 3-D parameter space. Red spheres indicate misclassifications. Right: at
the end of the training stage, the AI model can clearly identify two galaxy types, marked in blue
(spiral) and yellow (elliptical), achieving state-of-the-art accuracy.

best practices for reuse.
In the interest of optimized models, we will investigate the use of neural architecture search

principles to reduce our models leading to optimized implementations. Our work will cover standard
principles that can lead to reduced hardware footprint and latency such as pruning, quantization,
and other techniques, to better understand the actual complexity needed in AI models to make
reliable predictions. Our recent work [100, 101] demonstrates how network weights pruning can
be integrated with network training resulting in a reduced complexity model that still produces
satisfactory results.

II.6 Interplay between Data and AI Models
In addition to using distributed training algorithms to reduce time-to-insight, as described in

Section II.5.1, one may obtain new insights concerning the interplay between data and models by
visualizing how AI models gradually abstract knowledge during the training stage, and how data
are processed to make predictions during inference.

A first approach to elucidate the connections between data and AI models through the con-
vergence of open source deep learning platforms, TensorFlow, DOE high performance computing
platforms, and scientific visualizations was introduced by personnel in this proposal in [102]. The
driver for such study was the morphological classification of galaxies observed by the Dark Energy
Survey. In brief, the Xception architecture, pre-trained with the ImageNet dataset, was fine-tuned
with over 36,000 images that describe spiral and elliptical galaxies. A distributed algorithm was
designed and deployed to reduce the training stage from 2.1 hours to just 2.7 seconds. Thereafter,
TensorFlow was modified to output at each iteration of transfer learning the gradual increase in
classification accuracy, while also exploring the sectors of the neural network that were the most
active during training for each image class. Figure 3 shows the output of the neural network at
an early stage of transfer learning (left panel), and at the end of the training stage (right panel).
Note that the activation vector of each image has been projected onto a 3-D parameter space. Red
spheres indicate misclassifications, whereas blue and yellow spheres represent spiral and elliptical
galaxies, respectively, that have been correctly classified.
This type of analysis shed new light between the interplay of data and AI models, and provided new
insights into the selection of hyperparameters that enabled state-of-the-art performance for image
classification. Furthermore, coupling this work with distributed training reduced time-to-insight,
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Left: Xception pre-trained on ImageNet applied to 
galaxies 
 
Right: After fine-tuning on galaxy data, two galaxy 
clusters can be clearly identified



Arabella Martelli 19/05/17

the 3D imaging clustering
• Reconstruction: need to separate individual particles in high pile-up environment 
• Current algorithm: imaging-clustering*  

=> best suited for the high granularity offered by the HGCal 
- builds 2d-clusters (each layer)  

based on the energy-density  
of the cells (energy and distance) 

- associate 2d-clusters aligned  
along the shower axis  
over different layers 

• Extendable to more than two dimensions:  
- 3d spatial clustering already showed improvements => exploit full spatial correlation of the 

shower development 

• * inspired by: [A. Rodriguez, A. Laio, “Clustering by fast search and find of density peaks”,  
                                                                       Science 344 (6191), 1492-1496. (June 26, 2014)] 8

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team 

26/11/14

Status of EK+ HE Reco

Michalis Bachtis
(CERN-PH)

Upgrade TP meeting
On behalf of the GED working team 

26/11/14

high pT jet 
O(500 GeV)

Tracks and clusters clearly
identifiable by eye throughout 

most of detector.

140PU

example of  
3d-cluster 
pattern recognition

example of  
2d-cluster 
topology

▸ Easier to build upon existing work (e.g. through transfer learning) 
 
 
 

▸ Share work beyond HEP 

▸ AI models developed for HEP-specific tasks may be useful in other domains 
(e.g. LiDAR point cloud data)
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Figure 3: Left: early stage of fine-tuning of an Xception model, pre-trained on ImageNet, to perform
image classification of galaxies observed by the Dark Energy Survey. The activation vector of each
image is embedded in a 3-D parameter space. Red spheres indicate misclassifications. Right: at
the end of the training stage, the AI model can clearly identify two galaxy types, marked in blue
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and other techniques, to better understand the actual complexity needed in AI models to make
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II.6 Interplay between Data and AI Models
In addition to using distributed training algorithms to reduce time-to-insight, as described in
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FAIR PRINCIPLES & DATASETS IN HEP 
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EXAMPLE DATASETS AND AI MODELS
▸ Advance important tasks in HEP with reference datasets and AI models to 

explore FAIRness criteria for both 

▸ H(bb) jet tagging 

▸ Jet generation/simulation 

▸ Particle-flow reconstruction 

▸ ECAL crystal calibration 

▸ Level-1 trigger jet reconstruction 

▸ Charged particle tracking 

▸ …
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H(BB) JET TAGGING DATASET
▸ Hosted on CERN Open Data Portal 
▸ Collaborative effort between CERN IT-CDA and RCS-SIS 

groups, LHC and OPERA experiments 
▸ Built with Invenio library management software  
▸ Products (i.e. data, software, documentation, 

provenance) shared under open licenses and issued 
DOIs 

▸ EOS data storage; access via XRootD, HTTP  
▸ H(bb) dataset [10.7483/OPENDATA.CMS.JGJX.MS7Q] 
▸ 182 files, 245 GB, 18 million total entries (jets) 
▸ event features, e.g. MET, ρ (average density) 
▸ jet features, e.g. mass, pT, N-subjettiness variables 
▸ particle candidate features, e.g. pT, η, ϕ  
▸ charged particle / track features, e.g. impact 

parameter  
▸ secondary vertex features, e.g. flight distance

10
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IS THIS H(BB) JET TAGGING DATASET FAIR?
▸ Evaluated the FAIRness of this dataset in 10.1038/

s41597-021-01109-0 
▸ Lessons learned: Difficult to satisfy “Use FAIR 

Vocabularies”: requires the metadata values and qualified 
relations should be FAIR themselves, that is, terms should 
be findable from open, community-accepted vocabularies 
(i.e. jargon should be avoided or clearly defined)

11
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A FAIR and AI-ready Higgs boson 
decay dataset
Yifan Chen  1,2, E. A. Huerta  2,3 ✉, Javier Duarte  4, Philip Harris5, Daniel S. Katz  1, 
Mark S. Neubauer  1, Daniel Diaz  4, Farouk Mokhtar  4, Raghav Kansal  4,5,  
Sang Eon Park  6, Volodymyr V. Kindratenko  1, Zhizhen Zhao1 & Roger Rusack  7

To enable the reusability of massive scientific datasets by humans and machines, researchers aim to 
adhere to the principles of findability, accessibility, interoperability, and reusability (FAIR) for data  
and artificial intelligence (AI) models. This article provides a domain-agnostic, step-by-step assessment 
guide to evaluate whether or not a given dataset meets these principles. We demonstrate how to use 
this guide to evaluate the FAIRness of an open simulated dataset produced by the CMS Collaboration 
at the CERN Large Hadron Collider. This dataset consists of Higgs boson decays and quark and gluon 
background, and is available through the CERN Open Data Portal. We use additional available tools to 
assess the FAIRness of this dataset, and incorporate feedback from members of the FAIR community 
to validate our results. This article is accompanied by a Jupyter notebook to visualize and explore this 
dataset. This study marks the first in a planned series of articles that will guide scientists in the creation 
of FAIR AI models and datasets in high energy particle physics.

Introduction
Much of the success of applications of arti!cial intelligence (AI) to a broad range of scienti!c problems1,2 has 
been due to the availability of well-documented, high-quality datasets3; open source, state-of-the-art neural 
network models4,5; highly e"cient and parallelizable numerical optimization methods6; and the advent of 
innovative hardware architectures7.

Across science and engineering disciplines, the rate of adoption of AI and modern computing methods has 
been varied2. #roughout the process of harnessing AI and advanced computing, researchers have realized that 
the lack of an agreed upon set of best practices to produce, collect, and curate datasets has limited the combina-
tion of disparate datasets that with AI may reveal new correlations or patterns8,9.

From 2014 to 2016, a set of data principles, or best practices, based on !ndability, accessibility, interoperabil-
ity, and reusability (FAIR) were de!ned so that scienti!c datasets could be readily reused by both humans and 
machines. #e FAIR principles can be applied to address these limitations and increase the potential of AI for 
discovery in science and engineering. Using high energy physics (HEP) as an example, this article provides a 
domain-agnostic, step-by-step set of checks to guide in the process of making a dataset FAIR (“FAIRi!cation”).

In HEP, there is a long history of the application of machine learning (ML) techniques to !nd small signals 
in the presence of large backgrounds. #e observation of the Higgs boson at the CERN Large Hadron Collider 
(LHC) in 201210,11 was the result of the extensive use of ML algorithms based on boosted decision trees. Since 
then, as ML techniques have developed, their use in HEP has become ubiquitous. However, these developments 
have been largely the result of physicists adopting AI tools developed outside of their !eld of research.

#e authors of this paper are members of the FAIR4HEP collaboration which has representation from the AI 
community and two of the large LHC collaborations, ATLAS and CMS. We are collaborating to prepare datasets 
from HEP experiments that meet FAIR data principles12. #ere are several major impediments to this strategy, 
including, among others, the lack of jargon-free documentation, di"culty of access to, and poor structure of 
the dataset, and the lack of clear metrics with which to benchmark and compare AI models. A consequence 
of the FAIR data principles is that they promote the use of open datasets, which in turn supports collaboration 

1University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. 2Argonne National Laboratory, Lemont, 
Illinois, 60439, USA. 3University of Chicago, Chicago, Illinois, 60637, USA. 4University of California San Diego, La 
Jolla, California, 92093, USA. 5Halıcıoğlu Data Science Institute, La Jolla, California, 92093, USA. 6Massachusetts 
Institute of Technology, Cambridge, Massachusetts, 02139, USA. 7The University of Minnesota, Minneapolis, 
Minnesota, 55405, USA. ✉e-mail: elihu@anl.gov
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non-HEP researchers. !e (meta)data use a set of FAIR vocabularies de"ned for both general purpose and HEP 
domain-related purpose. Although not all terms are "ndable in FAIR vocabularies, those that are not "ndable 
are well-de"ned and referenced. Lastly, the description of this dataset provides references to other datasets from 
which it is derived. However, a more extensive set of references that elaborate on the paper describing this dataset, 
and more information about the methods used to derive this dataset, could be added to aid in the comprehension 
of the problem to be addressed with this dataset.

Reusable. Reusability requires the data to be readily usable for future research and to be able to be pro-
cessed further using di#erent computational methods. We found that the metadata and data of this dataset are 
well-described with accurate and relevant attributes. !us, we anticipate that the dataset will be reusable and can 
be integrated with additional data in future studies.

Methods
In this section we describe our approach to evaluate FAIRness of the CMS H(bb) dataset, and provide a 
human-readable description of the HEP dataset contents and its overall structure. !ese two complementary 
aspects of the dataset are critical elements in any pursuit of data FAIRi"cation.

Dataset FAIRification. We have created a set of ready-to-use, domain-agnostic checks to facilitate the eval-
uation of how well a dataset meets the FAIR guiding principles12, and applied them them to the H(bb) dataset. 
!ese checks provide researchers with a tool that can be used to assess the FAIRness of scienti"c datasets, and 
thus will streamline the use of such datasets for AI-driven analyses.

We have used the ARDC FAIR self assessment tools, developed by other researchers in the FAIR community, 
to validate our "ndings. We have also incorporated human-in-the-loop expertise in this process in the form of 
feedback from FAIR experts, who independently validated our results.

Dataset description. !e CMS H(bb) Open Dataset consists of two data samples that have been a critical 
part of the understanding of physical phenomena associated with the Higgs boson. The Higgs boson, first 
observed at the LHC in 201210,11, is an elementary particle that is related to the Higgs mechanism for electroweak 
symmetry breaking, responsible generating the masses of the elementary particles.

Metric Evaluation
F1. (Meta)data are assigned globally unique and persistent identi"ers.
Identi!er Uniqueness: this metric measures whether 
there is a scheme to uniquely identify the digital resource.

Pass. !e DOI for the data (which resolves to a URL29) follows a registered 
identi"er scheme.

Identi!er Persistence: this measures whether there is 
a policy that describes what the provider will do in the 
event an identi"er scheme becomes deprecated.

Pass. !e use of a DOI provide a persistent interoperable identi"er.

F2. Data are described with rich metadata.

Machine-readability of Metadata: to meet this metric, 
a URL to a document containing machine-readable 
metadata for the digital resource must be provided.

Pass. !e URL for the metadata57 in JSON Schema with REST API is available. 
!e use of JSON Schema provides clear human and machine readable 
documentation. Also, running the URL through the Rich Result Test shows the 
data page contains rich results.

Richness of Metadata: data are described with rich 
metadata

Partially pass. Reviewing the DataCite metadata for the DOI shows a fairly 
sparse record. !e metadata can be improved with richer "elds.

F3. Metadata clearly and explicitly include the identi"er of the data they describe.

Resource Identi!er in Metadata: this measures if the 
metadata document contains the identi"er for the digital 
resource that meets F1 principle.

Pass. !e association between the metadata and the dataset is made explicit 
because the dataset’s globally unique and persistent identi"er can be found in 
the metadata. Speci"cally, the DOI is a top-level and a mandatory "eld in the 
metadata record.

F4. (Meta)data are registered or indexed in a searchable resource
Index in a searchable resource: this measures the degree 
to which the digital resource can be found using web-
based search engines

Pass. !e dataset is indexed by Google Dataset Search engine.

A1. (Meta)data are retrievable by their identi"er using a standardized communications protocol
A1.1: !e protocol is open, free and universally implementable
Access Protocol: it measures whether the URL is open 
access and free. Pass. HTTP get on the identi"er’s URL returns a valid document

A1.2. !e protocol allows for an authentication and authorization where necessary
Access Authorization: it requires speci"cation of a 
protocol to access restricted content.

Pass. !is is an open dataset, accessible to everyone on the internet. !e data is 
non-pro"t and privacy-unrelated, so no access authorization is needed.

A2. Metadata should be accessible even when the data is no longer available

Metadata Longevity: it requires metadata to be present 
even in the absence of data

Pass. Metadata is stored separately in the CERN Open Data server. As per FAIR 
Principle F3, this metadata remains discoverable, even in the absence of the 
data, because it contains an explicit reference to the DOI of the data. Data and 
metadata will be retained for the lifetime of the repository. !e host laboratory 
CERN, currently plans to support the repository for at least the next 20 years.

Table 1. Findable and Accessible principle assessment checks for the CMS H(bb) Open Dataset.

4SCIENTIFIC DATA |            (2022) 9:31  | https://doi.org/10.1038/s41597-021-01109-0

www.nature.com/scientificdatawww.nature.com/scientificdata/

One consequence of the Higgs mechanism is that the Higgs boson, which has a lifetime of only ≈10−22 sec-
onds, couples to other particles in proportion to their mass and therefore will decay preferentially to elementary 
particles with comparatively higher masses. !e H(bb) decay process is particularly important because the b 
quark is the most massive quark to which the Higgs boson can decay. By measuring precisely the rate of this 
decay process, the physics of the coupling between the Higgs boson and ordinary matter can be tested. Any 
signi"cant deviations from the predicted values would be an indication of physics beyond the standard model of 
particle physics.

When a Higgs boson decays to b quarks, the quarks, which cannot be free in nature, are detected as clusters 
of particles moving away from the interaction vertex (jets) and recognized by a secondary decay vertex from a 
particle containing a b quark a short distance from the interaction. Collisions, or interactions between protons 
in the two circulating beams (events) occur at a rate of about 1 GHz, while the rate of production of Higgs bos-
ons is only 0.001 Hz, about one every hour. !e challenge of identifying Higgs bosons decaying to bb is to "nd 
them amid the much larger number of collisions (background) where a Higgs boson is not produced. In these 
background events, typically referred to as quantum chromodynamics (QCD) multijet events, a large number of 
particles are produced, which may include jets from b quarks, and can combine to resemble H(bb) events, which 
are the “signal” events.

To identify Higgs boson decays and separate them from the much larger QCD background, we use several 
key reconstructed components of proton-proton collisions. In particular, we reconstruct jets and analyze their 
characteristics which include tracks, secondary vertices (SVs), and substructure features. We also employ a 
particle-#ow (PF) algorithm27 to provide a comprehensive list of "nal-state particles that are identi"ed and 
reconstructed via combination of information from multiple detector subsystems.

!e following de"nes these elements:

•	 Jets are sprays of elementary particles in a cone-shaped pattern that radiate out from the collision vertex. !ey 
may be characterized by their substructure, including features like the jet mass, charge, and shape28. In total, 
the dataset contains 64 reconstructed jet features. !ese features are not necessarily independent from one 
another, and they may be derived from lower-level features related to the tracks, PF candidates, and secondary 
vertices.

Metric Evaluation
I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.

Use a Knowledge Representation (programming) 
Language: use a formal, accessible, shared, 
and broadly applicable language for knowledge 
representation

Pass. As described in Section 3, this dataset is represented based on the ROOT 
framework with Python interface. !e notebook we release with this manuscript 
provides the required tools to handle this dataset using HDF5. !e metadata is 
represented following the JSON Schema dra$ 4. Both are widely used formats in 
Physics.

Provide Human-readable descriptions Pass. !e description and data semantics of this dataset provides rich information 
on how to use the dataset.

I2. (Meta)data use vocabularies that follow FAIR principles.

Use FAIR Vocabularies: it requires the metadata 
values and quali"ed relations should be FAIR 
themselves, that is, terms should be "ndable from 
open, community-accepted vocabularies.

Partially pass. I2 requires the controlled vocabulary used to describe datasets to 
be documented and resolvable using globally unique and persistent identi"ers. For 
domain-speci"c terms, we leverage a vocabulary PhySH (Physics Subject Headings), 
a physics classi"cation scheme developed by American Physical Society (APS). Some 
terms in dataset descriptions and semantics are registered in PhySH. However, since 
PhySH is still under development, there is not very good coverage of the narrower 
experimental concepts. For the terms not covered, references and hover de"nitions 
are provided. For general terms, the metadata follows the vocabulary from JSON 
Schema and a minimal set of FAIR terms are used.

I3. (Meta)data include quali"ed references to other (meta)data.

Use Quali!ed References: !e goal is to create as 
many meaningful links as possible between (meta)data 
resources to enrich the contextual knowledge about 
the data.

Partially pass. !ere are connections with other datasets. A list of derived datasets is 
available at the dataset site [27]. Each referenced external piece of dataset is quali"ed 
by a resolvable URL and a unique CERN data identi"er in metadata. To improve, the 
papers of these related data can be provided, from which more information about 
methods and work#ow used to derive this dataset can be retrieved, and external 
datasets should be references by permanent identi"ers rather than URLs.

R1.1. (Meta)data are released with a clear and accessible data usage license.
Accessible Usage License: the existence of license 
document for (meta)data are being measured

Pass. !is dataset is released under Creative Commons CC0 dedication. !e license 
"eld is present in the metadata.

R1.2. (Meta)data are associated with detailed provenance.

Detailed Provenance: Who / What / When produced 
the data? Why / How was the data produced?

Pass. !e dataset is derived from other data, e.g.58,59, using public so$ware60 that was 
made public to process and reduce it. We are able to track the original authors and 
data sources. But ideally, this work#ow would be described in a machine-readable 
format.

R1.3. (Meta)data meet domain-relevant community standards.
Meet Community Standards: it measures whether 
a certi"cation of the resource meeting community 
standards exists.

Pass. Both metadata and data meet the CERN Open Data community standards and 
thus have been released on the CERN Open Data repository.

Table 2. Interoperable and Reusable principle assessment checks for CMS H(bb) Open Dataset.

https://doi.org/10.1038/s41597-021-01109-0
https://doi.org/10.1038/s41597-021-01109-0
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JetNet: A Machine Learning + High Energy Physics Python Library
Raghav Kansal

UC San Diego, CERN, Fermilab

ML at the CERN Large Hadron Collider

proton-proton collisions

We work here!• Looking at high energy collisions for 
• High precision tests of the 
standard model

• Solutions for mysteries in the 
universe e.g. dark matter etc.

Expected resource requirements 
with traditional methods Expected resources

Our Research and JetNet

Reconstruction

Simulation

Analysis

Data Collection

ML models on FPGAs for 
fast real-time triggers

MLPF
Replacing the CMS ParticleFlow 
reconstruction algorithm with ML

MPGAN Simulating jets with graph networks

• We develop ML algorithms for a wide range of computational tasks at the LHC

• Problem: ML + HEP development right now is generally not very accessible, 
standardized, or reproducible

• Our solution: JetNet Python library to facilitate research in this area, with:
• Easily accessible datasets/interfaces
• Standardized evaluation metrics
• More conveniences for helping researchers in this area

• What you’ll do:

• Learn Python + good coding practices
• Learn basics of modern particle physics research
• Develop this library further, starting with adding a new dataset
• Possibly apply this library to an ML project of your own!

• Huge computational challenge
• 40 million collisions/s (> 1PB/s!)
• Traditional computing can’t keep 
up

• Machine learning and deep 
learning are being explored as a 
faster, more effective, alternative 
for computational tasks

JetNet

Shout out to Carlos who presented JetNet 1 hour ago!

https://indico.jlab.org/event/459/contributions/11754/
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FAIR AI MODELS IN HEP
▸ We have FAIR principles for HEP dataset, but 

what can FAIR mean for AI models? 

▸ Paper exploring defining  
FAIR AI models in HEP: arXiv:2212.05081 

▸ Proposes a working definition of a  
FAIR AI model 

▸ Develops a template: Cookiecutter4FAIR  
to encourage these principles
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Abstract. The findable, accessible, interoperable, and reusable (FAIR) data

principles have provided a framework for examining, evaluating, and improving how

we share data with the aim of facilitating scientific discovery. Efforts have been

made to generalize these principles to research software and other digital products.

Artificial intelligence (AI) models—algorithms that have been trained on data rather

than explicitly programmed—are an important target for this because of the ever-

increasing pace with which AI is transforming scientific and engineering domains.

In this paper, we propose a practical definition of FAIR principles for AI models

and create a FAIR AI project template that promotes adherence to these principles.

We demonstrate how to implement these principles using a concrete example from

experimental high energy physics: a graph neural network for identifying Higgs bosons

decaying to bottom quarks. We study the robustness of these FAIR AI models and

their portability across hardware architectures and software frameworks, and report

new insights on the interpretability of AI predictions by studying the interplay between

FAIR datasets and AI models. Enabled by publishing FAIR AI models, these studies

pave the way toward reliable and automated AI-driven scientific discovery.

Submitted to: Mach. Learn.: Sci. Technol.
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PROPOSED FAIR PRINCIPLES FOR AI MODELS

FAIR AI Models in High Energy Physics 5

Table 1. Proposed FAIR principles for fully trained AI models used for AI-inference

only. These principles may be extended for retraining use cases by amending our

proposed definition for the ‘Reusability’ principle.

F: The AI model, and its associated metadata, are easy to find for both
humans and machines.

F1. The AI model is assigned a globally unique and persistent identifier.

F2. The AI model is described with rich metadata.

F3. Metadata clearly and explicitly include the identifier of the AI model they

describe.

F4. Metadata and the AI model are registered or indexed in a searchable resource.

A: The AI model, and its metadata, are retrievable via standardized
protocols.

A1. The AI model is retrievable by its identifier using a standardized communications

protocol.

A1.1. The protocol is open, free, and universally implementable.

A1.2. The protocol allows for an authentication and authorization procedure,

where necessary.

A2. Metadata are accessible, even when the AI model is no longer available.

I: The AI model interoperates with other models, data, and/or software
by exchanging data and/or metadata, and/or through interaction via
application programming interfaces (APIs), described through standards.

I1. The AI model reads, writes and exchanges data in a way that meets domain-

relevant community standards.

I2. The AI model includes qualified references to other objects, including the (FAIR)

data used to train the model.

R: The AI model is both usable (for inference) and reusable (can
be understood, built upon, or incorporated into other models and/or
software).

R1. The AI model is described with a plurality of accurate and relevant attributes.

R1.1. The AI model is given a clear and accessible license.

R1.2. The AI model is associated with detailed provenance, such as information

about the input data preparation and training process.

R2. The AI model includes qualified references to other models and/or software, such

as dependencies.

R3. The AI model meets domain-relevant community standards.

FAIR AI Models in High Energy Physics 5
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COOKIECUTTER4FAIR
▸ GitHub: https://github.com/FAIR4HEP/cookiecutter4fair 

▸ A solid start of developing your 
 FAIR AI projects

├── LICENSE            <- License for reusing code 
├── Makefile           <- Makefile with commands like `make data` or `make train` 
├── CITATION.cff       <- Standardized citation metadata 
├── README.md          <- The top-level README for developers using this project 
├── data 
│   ├── processed      <- The final, canonical data sets for modeling 
│   └── raw            <- The original, FAIR, and immutable data dump 
│ 
├── Dockerfile         <- For building a containerized environment 
| 
├── docs               <- A default Sphinx project for documentation; see sphinx-doc.org for details 
│ 
├── models             <- Trained and serialized models, model predictions, or model summaries 
│ 
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering), 
│                         the creator's initials, and a short `-` delimited description, e.g. 
│                         `1.0-jqp-initial-data-exploration`. 
│ 
├── references         <- Data dictionaries, manuals, and all other explanatory materials 
│ 
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc. 
│   └── figures        <- Generated graphics and figures to be used in reporting 
│ 
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g. 
│                         generated with `pip freeze > requirements.txt` 
│ 
├── setup.py           <- Makes project pip installable (`pip install -e .`) so src can be imported 
├── src                <- Source code for use in this project 
│   ├── __init__.py    <- Makes `src` a Python module 
│   │ 
│   ├── data           <- Scripts to download or generate data 
│   │   └── make_dataset.py 
│   │ 
│   ├── features       <- Scripts to turn raw data into features for modeling 
│   │   └── build_features.py 
│   │ 
│   ├── models         <- Scripts to train models and then use trained models to make 
│   │   │                 predictions 
│   │   ├── predict_model.py 
│   │   └── train_model.py 
│   │ 
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations 
│       └── visualize.py 
│ 
└── tox.ini            <- Tox file with settings for running `tox`; see tox.readthedocs.io

FAIR AI Models in High Energy Physics 9

fully automated, but require some additional manual steps, such as uploading the model
to DLHub as described above.

Table 2. Map between existing capabilities of the coookiecutter4fair AI project

template and our proposed FAIR principles for AI models. The ⇤ symbol indicates

that the process is not yet fully automated and requires additional manual steps.

Principle GitHub

repository

Zenodo

upload

DLHub

upload

Docker or

Apptainer image

License

Findable X
Accessible X ⇤
Interoperable X
Reusable ⇤ X X

2.4. FAIR implementation of H ! bb interaction network

In this section, we provide a concrete example, using Moreno et al’s interaction network
(IN) model [4].

2.4.1. Interaction network model The IN model was first proposed [57] in order to
explore evolution of physical dynamics and later adapted for a jet classification task:
identifying H ! bb jets from QCD jets at the LHC [4]. The dataset for training,
validation, and testing is derived from the CMS open simulated with 2016 conditions,
available from the CERN Open Data Portal [9]. It consists of jets, decomposed into
constituent charged particle tracks, and secondary vertices (SVs), labeled as either
H ! bb signal or QCD background. More information on the dataset can be found
in Chen et al. [10]. Figure 2 shows the IN model architecture and Table 3 provides the
values of the model hyperparameters as well as input data dimensions for the baseline
model. This network was trained on graph data structures based on Np = 30 particle
tracks, each with P = 60 features, and Nv = 5 SVs, each with S = 14 features, associated
with the jet. The physical description of each feature is given in Appendix C of Moreno
et al. [4].

Two input graphs are used: a fully-connected directed graph with Npp = Np(Np�1)

edges between the particle tracks and a separate graph with Nvp = NvNp connections
between the particle tracks and the SVs. The node level feature space of the fully
connected track graph is transformed to edge level features via two interaction matrices,
identified as RR[Np⇥Npp] and RS[Np⇥Npp], where the former accounts for how each node
receives information from other nodes and the latter encodes the information about
each node sending information to other nodes. The track-vertex graph is transformed
by similarly defined interaction matrices: RK[Np⇥Nvp] and RV [Nv⇥Nvp]. The feature spaces
of these graphs are transformed via nonlinear functions, respectively called f pp

R
and f vp

R
,

to obtain two DE dimensional internal state representations of these graphs. These
nonlinear functions are approximated by fully connected multilayer perceptrons (MLPs).
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COOKIECUTTER4FAIR DEMO

https://asciinema.org/a/554117
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▸ Edge convolutions for particle-particle and particle-vertex connections update 
particle features; summed particle features used to predict H(bb) or QCD prob. 

▸ FAIR AI model implementation: https://github.com/FAIR4HEP/
hbb_interaction_network
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BUILT UPON FAIR MODELS: RELEVANT FEATURES & MODEL COMPRESSION
▸ Can use layerwise relevance 

propagation and other XAI techniques 
to determine most relevant features 
and optimal model size 
 
 

▸ Can remove input features and shrink 
model size dramatically with very 
minor loss in performance! 
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Figure 5. Average relevance scores attributed to input track and secondary vertex

features (upper) and individual tracks and secondary vertices (lower). The tracks and

secondary vertices (SVs) are ordered according to their relative energy with respect to

the jet energy.
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3.4.2. Model reoptimization The studies presented in Sections 3.4.1 and 3.4.1 suggest
that the baseline IN model can be made simpler by reducing both the number of input
features it relies on and the number of trainable parameters. To explore this observation,
we trained alternate variants of the IN models where the features sv_ptrel, sv_etrel,
and track_quality were dropped along with additional 11 track and 3 secondary vertex
features that reduce the AUC less than 0.01%, as shown in Figure 4.

Table 10. The performance of a baseline and ablated models. �P represents the

number of particle track features that have been dropped and h is the number of nodes

in the hidden layers. The fidelity score is measured with respect to a baseline model.

Sparsity is measured by the fraction of activation nodes with an RNA score less than

0.2

�P , �S h,DE, DO Parameters AUC score [%] Fidelity [%] Sparsity
0, 0 (baseline) 60, 20, 24 25554 99.02 100 0.56

32, 16, 16 8498 98.87 96.93 0.52
12, 5 32, 8, 8 7178 98.84 96.79 0.48

16, 8, 8 2842 98.62 96.12 0.40

The details and performance metrics of these models are given in Table 10. It should
be noted that the ablated models presented here represent neither an exhaustive list of
such choices nor any result of some rigorous optimization. These results demonstrate
that a simpler IN model may be developed without compromising the quality of its
performance. As can be seen from the results in Table 10, both AUC score and fidelity
of the alternate models are very close to that of the baseline model, though the number
of trainable parameters is significantly lower.

Figure 8 shows the NAP diagrams for the model with 15 (5) dropped track (vertex)
features with 32 nodes per hidden layer where the internal representation dimensions
DE and DO are set to 16 and 8 for the left and right figures, respectively. Sparsity of the
latter, as measured by the number of activation nodes with RNA < 0.2, is noticeably
lower than the baseline model though the former has increased sparsity. With reduced
size for the post interaction internal space representation, the alternate models do not
completely disentangle the jet classes at the output stage of fO.

4. Discussion and conclusion

We have proposed a practical definition of findable, accessible, interoperable, and
reusable (FAIR) principles for artificial intelligence (AI) models. To promote adherence
to these principles, we introduced a FAIR AI project template. We demonstrated how to
implement a concrete example of a FAIR AI model in experimental high energy physics
following this template. We studied the robustness of these FAIR AI models and their
portability across hardware architectures and software frameworks, and reported new
insights on the interpretability of AI predictions by studying the interplay between FAIR
datasets and AI models.
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SUMMARY
▸ Goal of FAIR4HEP is to interpret and refine what FAIR means for HEP data/models 
▸ Enable “plug and play” datasets: allow for combinations of different computing 

resources 
▸ Vision: connected services linking datasets, benchmark models (code), 

deployment servers, and publications to make everything more FAIR 
▸ Simpler discovery of new datasets and models 

▸ Projects 
▸ Evaluate FAIRness of existing public datasets  
▸ Standardize FAIR publication of AI models in HEP 
▸ Create example FAIR datasets and AI models 
▸ Enhance existing services to make them more FAIR 

▸ Welcome feedback!
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FAIR4HEP TEAM (FAIR4HEP.GITHUB.IO)
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Volodymyr Kindratenko 
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Mark Neubauer 
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Zhizhen Zhao 
Co-PI, UIUC

Priscilla Cushman 
Co-PI, UMN

Andrew Furmanski 
Co-PI, UMN

Vuk Mandic 
Co-PI, UMN

Roger Rusack 
Co-PI, UMN

Ju-Sun 
Co-PI, UMN

Phil Harris 
Co-PI, MIT

Javier Duarte 
Co-PI, UCSD

+ many postdocs, PhD students, MS students, and undergrads!
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