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Hadronic interaction simulation in GEANT4

• In particle colliders, hadrons (π±, K±, p, n, ...) are copiously produced and interact with the
detector material, creating a shower of secondary particles.

• A full detector simulation requires modelling hadronic interaction

p1 + stationary target → q1 + q2 + . . .

where p1 is the hadron projectile 4-vector momentum and qi are secondary product momenta.

• Full simulations are increasingly expensive, motivating the exploration of deep generative
architectures such as GAN [1, 3] and normalising flow [5] for to enhance simulation speed.

• We explore here the ability of a normalizing flow architecture to simulate the final state of the
interaction between hadrons and nuclei, using data generated with the GEANT4 toolkit.
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Normalizing flow

• A normalizing flow seeks a bijective transformation f : U → X, in which U ∼ πU is the base
variable and X ∼ pX the target.

• The base distribution πU is known and simple, whereas the target pX unknown and complex.

• The bijector f is parametrized by a Multilayer Perceptron (MLP) and multiple bijectors are
chained together to create a deeper and more expressive flow.

• The weights w of the MLPs are learned from GEANT4 data. On inference, we sample u from πU

and compute x = f(u)
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Autoregressive density estimators I

• Let the target random variable be X ∈ Rd, X ∼ pX . Decompose pX as a product of pXi|X1:i−1

and parameterise each conditional as a Gaussian [4] (autoregressive property).

pX(x) =

d∏
i=1

pXi|X1:i−1
(xi|x1:i−1) =

d∏
i=1

N
(
xi|µi, σ

2
i

)
, (1)

in which µi = µi(X1:i−1) and σi = σi(X1:i−1). Now let

Ui =
Xi − µi

σi
⇒ Xi = Uiσi + µi = fi(Ui, X1:i−1) (2)

• Since Xi ∼ N (µi, σ
2
i ), Ui ∼ N . Perform a change of variable,
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Autoregressive density estimators II

• f is learned from data by minimizing the KL-divergence of pX(x) and the sample distribution
πX(x), tantamount to minimizing the negative log likelihood of the data

− 1

N

N∑
i=1

log(pX(xi)), xi ∼ πX (4)

• f is implemented using the Masked Autoencoder for Density Estimation (MADE) architecture [2],
which ensures µi = µi(x<i) and σi = σi(x<i). We feed into each MADE block the COM-frame
total energy Ecom as the condition and concatenate multiple blocks to create a deep conditional
Masked Autoregressive Flow (MAF).
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MADE architecture

Figure: Masked Autoencoder for Density Estimation (MADE) architecture [2] as building block of the
MAF. The connections are systematically dropped out to guarantee the autoregressive property.
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Simulation data - low projectile energy

• We simulated the data from π− +H → q1 + q2 reaction using FTFP BERT ATL physics list from
GEANT4, which comprises of 2 models operating at two regimes of projectile energy.

• The Bertini cascade model operates at 0GeV < kπ < 12GeV

Figure: GEANT4 simulated of final state particle in a 2 → 2 hadronic interaction at kπ− = 1.9 GeV.
Notice the irregularity the pz distribution.
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Simulation data - high projectile energy

Figure: GEANT4 simulated of final state particle in a 2 → 2 hadronic interaction at kπ− = 33.5 GeV.

• Fritiof parton model operates at 9GeV < kπ < 100TeV . Data generated by Fritiof are
considerably less complex than by Bertini ⇒ Train density estimator separately for 2 regimes.

• Train each model to generate the first particle’s momentum (E, px, py, pz), conditioned on the
COM-frame total energy.

• Test model ability to interpolate to projectile energy it never sees during training.
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Model training

• Model contains 30 MADE blocks, each consisting of a 2-layer MLP, each layer having 128 nodes.

• Training objective: minimize the negative log likelihood of the input data.

• Trained over 2000 epochs, with learning rate decaying from 10−4 to 10−6.

• Quantify the closeness of truth distribution (f1) and generated distribution (f2) by Wasserstein
(earth-mover) distance

W (f1, f2) =

∫ 1

0

|F−1
1 (q)− F−1

2 (q)|dq (5)

where Fi is the cumulative distribution function i.
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Qualitative comparison of MAF and truth data - low energy I

Figure: Data generated by MAF and GEANT4 at kπ− = 1.4 GeV (up) and kπ− = 2.2 GeV (down).

• The model captures the irregular shape of the pT and pz distributions.

• Despite being trained on (E, px, py, pz), it reproduces the mass spectrum ⇒ learned physically
relevant information.
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Qualitative comparison of MAF and truth data - low energy II

Figure: Data generated by the MAF and GEANT4 at kπ− = 0.2 GeV (up) and kπ− = 6.6 GeV (down).

The performance degrades near both upper and lower boundaries of the training conditional input,
possibly due to uneven sampling of training conditional input (see next slide).
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Quantitative result

Figure: Comparison of train and test performance of the MAF on at low-projectile regime.

For kπ− ∈ [1, 5] GeV, test performance agrees with training performance. Where the grid of conditional
inputs is more sparse, we have sub-optimal performance ⇒ Use more training data at these regimes.
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Result at high projectile energy

Figure: Qualitative comparison of MAF- and GEANT4 data at kπ− = 67.7 GeV (upper) and
quantitative performance over the range of test conditions (lower). At high projectile energy (Fritiof
regime), the model reaches better agreement to GEANT4 than at lower energy (Bertini regime). 13 / 16



Preliminary 2 → 3 simulation

Figure: Qualitative comparison between MAF- and GEANT4-generated data for 2 → 3 interaction at
kπ− = 77.5 GeV.

Reasonable agreement between generated and truth data. However, the mass spectrum is more spread
out. Will investigate ways to mitigate this short-coming. 14 / 16



Summary and future directions

• Result shows that the MAF architecture can learn the kinematic distribution of hadronic
interaction and interpolate to unseen projectile energies.

• The model can captures non-smooth features of the kinematic distribution, but shows poor
performance with low training statistics.

• Moving forward, we will obtain training data on a more dense grid of conditional inputs,
experiment with different ways to scale the conditional input and representation of the data.

• Explore other initial conditions (other projectiles and target) and final states (3-particle, 4-particle
final states, etc.).
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